Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm
暂无分享,去创建一个
[1] M. Woodbury. A missing information principle: theory and applications , 1972 .
[2] L. A. Goodman. Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .
[3] Donald B. Rubin,et al. Noniterative Least Squares Estimates, Standard Errors and F‐Tests for Analyses of Variance with Missing Data , 1976 .
[4] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[5] Arnold Zellner,et al. Seasonal Analysis of Economic Time Series , 1981 .
[6] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[7] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[8] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[9] D. Rubin. Multiple imputation for nonresponse in surveys , 1989 .
[10] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[11] D. Rubin,et al. Statistical Analysis with Missing Data. , 1989 .
[12] I. Meilijson. A fast improvement to the EM algorithm on its own terms , 1989 .
[13] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[14] George Casella,et al. Improving the EM Algorithm , 1992 .