준감독 학습 알고리즘을 위한 능동적 레이블 데이터 선택
暂无分享,去创建一个
본 논문에서는 준감독 학습 알고리즘(Semi-Supervised Learning Algorithm)의 학습데이터에 필요한 소수의 레이블 데이터를 능동적으로 선택하기 위한 무감독경쟁학습 알고리즘인 VCNN(Vector Centroid Neural Network)을 제안한다. 준감독 학습 알고리즘에서 레이블 데이터의 선택은 학습 결과 큰 영향을 미치고, 레이블 데이터를 선택하는데 있어 많은 비용과 전문적인 지식이 필요하다. 본 논문에서 능동적이고 효율적인 레이블 데이터 선택을 검증하기 위하여 UCI database 와 caltech dataset 을 이용하여 실험한 결과, 기존의 레이블 데이터 선택 방법과 비교하여 안정된 분류 결과와 최소의 오차율을 나타냈다.