Mapping Plant Functional Types at Multiple Spatial Resolutions Using Imaging Spectrometer Data

Imaging spectrometer data have been used to map plant functional types (PFTs—plant species grouped by similarities in their resource use, ecosystem function, and responses to environmental conditions) at spatial resolutions of 30 m and finer, but not at coarser spatial resolutions that may be necessary for global PFT mapping. This study uses spatially resampled Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data acquired over the Wasatch Mountains of northern Utah, USA to examine changes in PFT classification accuracy as spatial resolution is degraded from 20 to 60 m. Accuracy was dependent on the spatial resolution of the classified data and the spatial resolution of endmembers used in the multiple endmember spectral mixture analysis classifier.

[1]  Mary E. Martin,et al.  Determining Forest Species Composition Using High Spectral Resolution Remote Sensing Data , 1998 .

[2]  Fuan Tsai,et al.  Detecting invasive plant species using hyperspectral satellite imagery , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[3]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[4]  S. Díaz,et al.  Plant functional types and ecosystem function in relation to global change , 1997 .

[5]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[6]  S. Ollinger,et al.  Estimating Species Abundance in a Northern Temperate Forest Using Spectral Mixture Analysis , 2007 .

[7]  John F. Mustard,et al.  Highland contamination in lunar mare soils: Improved mapping with multiple end-member spectral mixture analysis (MESMA) , 2003 .

[8]  D. Roberts,et al.  Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil , 2007 .

[9]  George C. Hurtt,et al.  Hurricane Katrina's Carbon Footprint on U.S. Gulf Coast Forests , 2007, Science.

[10]  Sunil Narumalani,et al.  A Comparative Evaluation of ISODATA and Spectral Angle Mapping for the Detection of Saltcedar Using Airborne Hyperspectral Imagery , 2006 .

[11]  T. Painter,et al.  Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data , 2003 .

[12]  Kris J. Becker,et al.  Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars , 2002 .

[13]  D. Roberts,et al.  A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper , 2004 .

[14]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[15]  Paul Maus,et al.  A primer on mapping vegetation using remote sensing , 2001 .

[16]  Harald Bugmann,et al.  Functional types of trees in temperate and boreal forests: classification and testing , 1996 .

[17]  B. Walker Biodiversity and Ecological Redundancy , 1992 .

[18]  D. Roberts,et al.  Wildfire temperature and land cover modeling using hyperspectral data , 2006 .

[19]  S. Lavorel,et al.  Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail , 2002 .

[20]  S. Ustin,et al.  Mapping nonnative plants using hyperspectral imagery , 2003 .

[21]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[22]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[23]  Susan L. Ustin,et al.  Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Philip E. Dennison,et al.  Comparison of fire temperature and fractional area modeled from SWIR, MIR, and TIR multispectral and SWIR hyperspectral airborne data , 2011 .

[25]  Susan L. Ustin,et al.  Hyperspectral remote sensing for invasive species detection and mapping , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[26]  Ramakrishna R. Nemani,et al.  Global vegetation cover changes from coarse resolution satellite data , 1996 .

[27]  Pamela L. Nagler,et al.  Remote monitoring of tamarisk defoliation and evapotranspiration following saltcedar leaf beetle attack , 2009 .

[28]  D. Roberts,et al.  Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE , 2003 .

[29]  Paul E. Lewis,et al.  MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) , 2002, SPIE Defense + Commercial Sensing.

[30]  D. Roberts,et al.  Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments , 2001 .

[31]  Amy E. Parker Williams,et al.  Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering , 2002 .

[32]  Gregory S. Okin,et al.  Mapping North African landforms using continental scale unmixing of MODIS imagery , 2005 .

[33]  Roberta E. Martin,et al.  Remote sensing of native and invasive species in Hawaiian forests , 2008 .

[34]  Jacob T. Mundt,et al.  Discrimination of hoary cress and determination of its detection limits via hyperspectral image processing and accuracy assessment techniques , 2005 .

[35]  James H. Everitt,et al.  Use of Remote Sensing for Detecting and Mapping Leafy Spurge (Euphorbia esula) , 1995, Weed Technology.

[36]  D. Roberts,et al.  The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral , 2003 .

[37]  John R. Weeks,et al.  Measuring the Physical Composition of Urban Morphology Using Multiple Endmember Spectral Mixture Models , 2003 .

[38]  Lloyd L. Coulter,et al.  Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery , 2007 .

[39]  D. Roberts,et al.  Mapping two Eucalyptus subgenera using multiple endmember spectral mixture analysis and continuum-removed imaging spectrometry data , 2011 .

[40]  S. Ustin,et al.  Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA , 2005 .

[41]  C. Tucker,et al.  A large carbon sink in the woody biomass of Northern forests , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Wolfgang Cramer,et al.  Plant functional types and climatic change: Introduction , 1996 .

[43]  F. Novo,et al.  Plant functional types and ecosystem function in Mediterranean shrubland , 1999 .