Uniform spanning trees on Sierpinski graphs

We study spanning trees on Sierpinski graphs (i.e., finite approximations to the Sierpinski gasket) that are chosen uniformly at random. We construct a joint probability space for uniform spanning trees on every finite Sierpinski graph and show that this construction gives rise to a multi-type Galton-Watson tree. We derive a number of structural results, for instance on the degree distribution. The connection between uniform spanning trees and loop-erased random walk is then exploited to prove convergence of the latter to a continuous stochastic process. Some geometric properties of this limit process, such as the Hausdorff dimension, are investigated as well. The method is also applicable to other self-similar graphs with a sufficient degree of symmetry.

[1]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[2]  S. Kusuoka,et al.  Self-avoiding paths on the pre-Sierpinski gasket , 1990 .

[3]  Abhishek Dhar,et al.  Distribution of sizes of erased loops for loop-erased random walks , 1997 .

[4]  Tadashi Shima,et al.  On a spectral analysis for the Sierpinski gasket , 1992 .

[5]  Yoshiki Tsujii Markov-self-similar sets , 1991 .

[6]  T. Hattori,et al.  Self-avoiding process on the Sierpinski gasket , 1991 .

[7]  O. Jones Large deviations for supercritical multitype branching processes , 2004, Journal of Applied Probability.

[8]  Jason A. Anema Counting Spanning Trees On Fractal Graphs , 2012, 1211.7341.

[9]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[10]  Loop-erased random walk on the Sierpinski gasket , 2012, 1209.4959.

[11]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[12]  Ian Chiswell,et al.  Introduction to λ-trees , 2001 .

[13]  Wei-Shih Yang,et al.  Spanning Trees on the Sierpinski Gasket , 2006, cond-mat/0609453.

[14]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[15]  S. Kusuoka,et al.  Self-avoiding Paths on the Three Dimensional Sierpinski Gasket , 1993 .

[16]  Stephan G. Wagner,et al.  Resistance Scaling and the Number of Spanning Trees in Self-Similar Lattices , 2011 .

[17]  T. Hattori,et al.  Self-repelling walk on the Sierpiński gasket , 2002 .

[18]  Kumiko Hattori Exact Hausdorff Dimension of Self-avoiding Processes on the Multi-dimensional Sierpinski Gasket , 2000 .

[19]  Tadashi Shima On eigenvalue problems for the random walks on the Sierpinski pre-gaskets , 1991 .

[20]  Martin T. Barlow,et al.  Brownian motion on the Sierpinski gasket , 1988 .

[21]  S. Kusuoka,et al.  The exponent for the mean square displacement of self-avoiding random walk on the Sierpinski gasket , 1992 .

[22]  Manna,et al.  Spanning trees in two dimensions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[23]  Elmar Teufl,et al.  Spanning trees of finite Sierpiński graphs , 2006 .

[24]  Charles J. Mode,et al.  Multitype branching processes;: Theory and applications , 1971 .

[25]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[26]  Lung-Chi Chen,et al.  Structure of spanning trees on the two-dimensional Sierpinski gasket , 2008, Discret. Math. Theor. Comput. Sci..

[27]  Elmar Teufl,et al.  The Number of Spanning Trees in Self-Similar Graphs , 2011 .