Fast Fourier Sparsity Testing

A function $f : \mathbb{F}_2^n \to \mathbb{R}$ is $s$-sparse if it has at most $s$ non-zero Fourier coefficients. Motivated by applications to fast sparse Fourier transforms over $\mathbb{F}_2^n$, we study efficient algorithms for the problem of approximating the $\ell_2$-distance from a given function to the closest $s$-sparse function. While previous works (e.g., Gopalan et al. SICOMP 2011) study the problem of distinguishing $s$-sparse functions from those that are far from $s$-sparse under Hamming distance, to the best of our knowledge no prior work has explicitly focused on the more general problem of distance estimation in the $\ell_2$ setting, which is particularly well-motivated for noisy Fourier spectra. Given the focus on efficiency, our main result is an algorithm that solves this problem with query complexity $\mathcal{O}(s)$ for constant accuracy and error parameters, which is only quadratically worse than applicable lower bounds.

[1]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[2]  Ashley Montanaro,et al.  On the communication complexity of XOR functions , 2009, ArXiv.

[3]  Daniel M. Kane,et al.  Robust Estimators in High Dimensions without the Computational Intractability , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[4]  Amir Shpilka,et al.  On the structure of boolean functions with small spectral norm , 2013, Electron. Colloquium Comput. Complex..

[5]  Arnab Bhattacharyya,et al.  Testing Sparsity over Known and Unknown Bases , 2016, ICML.

[6]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[7]  Dana Ron,et al.  Property Testing: A Learning Theory Perspective , 2007, COLT.

[8]  Yuichi Yoshida,et al.  Testing Linear-Invariant Function Isomorphism , 2013, ICALP.

[9]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[10]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[11]  Ronitt Rubinfeld,et al.  Tolerant property testing and distance approximation , 2006, J. Comput. Syst. Sci..

[12]  Shachar Lovett,et al.  Estimating the Distance from Testable Affine-Invariant Properties , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[13]  Shengyu Zhang,et al.  Fourier Sparsity, Spectral Norm, and the Log-Rank Conjecture , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[14]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[15]  Zhiqiang Zhang,et al.  On the parity complexity measures of Boolean functions , 2010, Theor. Comput. Sci..

[16]  Oded Goldreich,et al.  Modern Cryptography, Probabilistic Proofs and Pseudorandomness , 1998, Algorithms and Combinatorics.

[17]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[18]  Shafi Goldwasser,et al.  Proving hard-core predicates using list decoding , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[19]  Bruno Codenotti,et al.  Spectral Analysis of Boolean Functions as a Graph Eigenvalue Problem , 1999, IEEE Trans. Computers.

[20]  Zhiqiang Zhang,et al.  Communication complexities of symmetric XOR functions , 2009, Quantum Inf. Comput..

[21]  Eyal Kushilevitz,et al.  Learning decision trees using the Fourier spectrum , 1991, STOC '91.

[22]  Leonid A. Levin,et al.  Randomness and Nondeterminism , 1995 .

[23]  Rocco A. Servedio,et al.  Testing Fourier Dimensionality and Sparsity , 2009, SIAM J. Comput..

[24]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 1: Basic Techniques , 2001 .