Oxides and nitrides as alternative plasmonic materials in the optical range

As alternatives to conventional metals, new plasmonic materials offer many advantages in the rapidly growing fields of plasmonics and metamaterials. These advantages include low intrinsic loss, semiconductor-based design, compatibility with standard nanofabrication processes, tunability, and others. Transparent conducting oxides such as Al:ZnO, Ga:ZnO and indium-tin-oxide (ITO) enable many high-performance metamaterial devices operating in the near-IR. Transition-metal nitrides such as TiN or ZrN can be substitutes for conventional metals in the visible frequencies. In this paper we provide the details of fabrication and characterization of these new materials and discuss their suitability for a number of metamaterial and plasmonic applications.

[1]  A. Boltasseva,et al.  A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.

[2]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[3]  Ceramic plasmonic components for optical metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[4]  A. Urbas,et al.  Organic materials with negative and controllable electric permittivity , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[5]  David M. Slocum,et al.  Funneling light through a subwavelength aperture using epsilon-near-zero materials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[6]  M. Helm,et al.  Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling , 2011, Nature communications.

[7]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[8]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[9]  T. Sands,et al.  Titanium nitride as a plasmonic material for visible wavelengths , 2010, 1011.4896.

[10]  Alexandra Boltasseva,et al.  Semiconductors for plasmonics and metamaterials , 2010, 1108.1529.

[11]  A. Galca,et al.  Optical properties of zinc oxide thin films doped with aluminum and lithium , 2010 .

[12]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[13]  Joakim Andersson,et al.  On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films , 2010 .

[14]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[15]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[16]  G. Zhu,et al.  Engineering of low-loss metal for nanoplasmonic and metamaterials applications , 2009 .

[17]  Akio Suzuki,et al.  Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition , 2008 .

[18]  J. Myoung,et al.  Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films , 2008 .

[19]  K. Ellmer,et al.  Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries , 2008 .

[20]  U. Chettiar,et al.  The Ag dielectric function in plasmonic metamaterials. , 2008, Optics express.

[21]  A. Kildishev,et al.  Engineering space for light via transformation optics. , 2007, Optics letters.

[22]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[23]  T. Miyata,et al.  Effect of thickness on the stability of transparent conducting impurity‐doped ZnO thin films in a high humidity environment , 2007 .

[24]  Dong-Ho Kim,et al.  Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering , 2006 .

[25]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[26]  Byung-Teak Lee,et al.  Growth and characterization of single crystalline Ga-doped ZnO films using rf magnetron sputtering , 2006 .

[27]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[28]  Yan-Ru Lin,et al.  Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3 , 2003 .

[29]  J. Horwitz,et al.  Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition , 2002 .

[30]  Hyung Kook Kim,et al.  Solid solubility limits of Ga and Al in ZnO , 2002 .

[31]  Heung-Jae Cho,et al.  Robust ternary metal gate electrodes for dual gate CMOS devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[32]  Stergios Logothetidis,et al.  Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films , 2001 .

[33]  Kun Ho Kim,et al.  Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering , 1997 .

[34]  I. Nakabayashi,et al.  Film properties of ZnO:Al prepared by cosputtering of ZnO:Al and either Zn or Al targets , 1997 .

[35]  C. Granqvist Transparent conductive electrodes for electrochromic devices: A review , 1993 .

[36]  A. Rockett,et al.  Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering , 1985 .

[37]  B. O. Seraphin,et al.  Optical properties of CVD-coated TiN, ZrN and HfN , 1982 .

[38]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .