Domain perturbation method and local minimizers to Ginzburg-Landau functional with magnetic effect

We prove the existence of vortex local minimizers to Ginzburg-Landau functional with a global magnetic effect. A domain perturbating method is developed, which allows us to extend a local minimizer on a nonsimply connected superconducting material to the local minimizer with vortex on a simply connected material.

[1]  Luís Almeida Topological sectors for Ginzburg-Landau energies , 1999 .

[2]  Luís Almeida Threshold transition energies for Ginzburg-Landau functionals , 1999 .

[3]  S. Jimbo,et al.  Stable Vortex Solutions to the Ginzburg-Landau Equation with a Variable Coefficient in a Disk , 1999 .

[4]  Patricia Bauman,et al.  Stable Nucleation for the Ginzburg-Landau System with an Applied Magnetic Field , 1998 .

[5]  Itai Shafrir,et al.  Asymptotic Behavior of Minimizers for the Ginzburg-Landau Functional with Weight. Part I , 1998 .

[6]  J. Rubinstein,et al.  Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents , 1996 .

[7]  S. Jimbo,et al.  Stable Solutions with Zeros to the Ginzburg–Landau Equation with Neumann Boundary Condition , 1996 .

[8]  J. Zhai,et al.  Ginzburg-Landau equation with magnetic effect non-simply-connected domains , 1995 .

[9]  J. Zhai,et al.  Ginzburg landau equation and stable steady state solutions in a non-trivial domain , 1994 .

[10]  S. Jimbo,et al.  Ginzburg Landau equation and stable solutions in a rotational domain , 1993 .

[11]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[12]  Y. Y. Chen Nonsymmetric vortices for the Ginzberg–Landau equations on the bounded domain , 1989 .

[13]  Yisong Yang,et al.  Existence, regularity, and asymptotic behavior of the solutions to the Ginzburg-Landau equations on ℝ3 , 1989 .

[14]  Y. Y. Chen,et al.  Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon☆ , 1989 .

[15]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[16]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[17]  Yisong Yang,et al.  Boundary value problems of the Ginzburg–Landau equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Tetsuro Miyakawa,et al.  On nonstationary solutions of the Navier-Stokes equations in an exterior domain , 1982 .

[19]  溝畑 茂,et al.  The theory of partial differential equations , 1973 .