Magnetic Frustration Driven by Itinerancy in Spinel CoV2O4

[1]  J. Neuefeind,et al.  Structural transition and orbital glass physics in near-itinerant CoV2O4 , 2015, 1507.02572.

[2]  M. Reehuis,et al.  Orbital Glass State of the Nearly Metallic Spinel Cobalt Vanadate. , 2015, Physical review letters.

[3]  H. Zhou,et al.  Competition between the inter- and intra-sublattice interactions in Yb 2 V 2 O 7 , 2015 .

[4]  M. Stone,et al.  Strong competition between orbital ordering and itinerancy in a frustrated spinel vanadate , 2014, 1407.4143.

[5]  G. Granroth,et al.  Magnons and a two-component spin gap in FeV2O4 , 2014, 1403.0269.

[6]  Ramandeep Kaur,et al.  The nature of itineracy in CoV2O4: a first-principles study , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Yong Baek Kim,et al.  RKKY interactions and the anomalous Hall effect in metallic rare-earth pyrochlores. , 2013, Physical review letters.

[8]  H. Zhou,et al.  Dielectric properties of single crystal spinels in the series FeV 2 O 4 , MnV 2 O 4 , and CoV 2 O 4 in high magnetic fields , 2013 .

[9]  Handong Sun,et al.  Magnetic properties and origins of ferroelectric polarization in multiferroic CaMn7O12 , 2013 .

[10]  R. Fishman,et al.  Spin state and spectroscopic modes of multiferroic BiFeO3 , 2013, 1302.4365.

[11]  N. Spaldin,et al.  Noncollinear magnetism and single-ion anisotropy in multiferroic perovskites , 2012, 1206.0718.

[12]  H. Zhou,et al.  Magnetic order and ice rules in the multiferroic spinel FeV 2 O 4 , 2012, 1204.2812.

[13]  Yuanjie Huang,et al.  Magnetic, structural, and thermal properties of CoV2O4 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  S. Savrasov,et al.  Exchange constants and spin waves of the orbital-ordered noncollinear spinel MnV 2 O 4 , 2012, 1201.6375.

[15]  Y. Motome,et al.  Non-Kondo mechanism for resistivity minimum in spin ice conduction systems. , 2012, Physical review letters.

[16]  H. Zhou,et al.  Chemical pressure effects on structural, magnetic, and transport properties of Mn 1-x Co x V 2 O 4 , 2011 .

[17]  J. S. Hicks,et al.  Four-circle single-crystal neutron diffractometer at the High Flux Isotope Reactor , 2011 .

[18]  H. Zhou,et al.  Co[V2]o4: a spinel approaching the itinerant electron limit. , 2011, Physical review letters.

[19]  R. Kremer,et al.  Magnetic susceptibility and specific heat of a spinel MnV 2 O 4 single crystal , 2011 .

[20]  Bella Lake,et al.  Spin and orbital order in the vanadium spinel MgV 2 O 4 , 2010, 1009.0429.

[21]  J. van den Brink,et al.  Frustration-induced insulating chiral spin state in itinerant triangular-lattice magnets. , 2010, Physical review letters.

[22]  Y. Tokura,et al.  Emergence of a diffusive metal state with no magnetic order near the Mott transition in frustrated pyrochlore-type molybdates. , 2009, Physical review letters.

[23]  R. Valentí,et al.  Proposed orbital ordering in MnV2O4 from first-principles calculations. , 2009, Physical review letters.

[24]  R. Fishman,et al.  Spin rotation technique for non-collinear magnetic systems: application to the generalized Villain model , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  T. Arima,et al.  Structural and Magnetic Properties of Spinel FeV2O4 with Two Ions Having Orbital Degrees of Freedom , 2008 .

[26]  S. Nagler,et al.  Magnetic and orbital ordering in the spinel MnV2O4. , 2007, Physical review letters.

[27]  Y. Tokura,et al.  Nature of the transition between a ferromagnetic metal and a spin-glass insulator in pyrochlore molybdates. , 2007, Physical review letters.

[28]  J. Goodenough,et al.  Enhanced pressure dependence of magnetic exchange in A2+[V2]O4 spinels approaching the itinerant electron limit. , 2007, Physical review letters.

[29]  L. Balicas,et al.  Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice. , 2006, Physical review letters.

[30]  H. Suzuki,et al.  Magnetic short-range order and reentrant-spin-glass-like behavior in Co Cr 2 O 4 and Mn Cr 2 O 4 by means of neutron scattering and magnetization measurements , 2004 .

[31]  J. Íñiguez,et al.  Orbital and Spin Chains in ZnV2O4. , 2003, Physical review letters.

[32]  G. H. Lander,et al.  Neutron Data Booklet , 2003 .

[33]  M. Onoda,et al.  A pseudotetramer in the geometrically frustrated spinel system CdV2O4 , 2002 .

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[35]  S. Bramwell,et al.  LETTER TO THE EDITOR: Frustration in Ising-type spin models on the pyrochlore lattice , 1998 .

[36]  R. Moessner,et al.  Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet , 1997, cond-mat/9712063.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[41]  J. Mydosh Spin glasses : an experimental introduction , 1993 .

[42]  A. Magee Spin correlations in frustrated magnets with orbital ordering , 2012 .

[43]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[44]  Philippe Mendels,et al.  Spin-Lattice Coupling in Frustrated Antiferromagnets , 2009, 0907.1693.

[45]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .