Ab initio quality properties for macromolecules using the ADMA approach

We describe new developments of an earlier linear scaling algorithm for ab initio quality macromolecular property calculations based on the adjustable density matrix assembler (ADMA) approach. In this approach, a large molecule is divided into fuzzy fragments, for which quantum chemical calculations can easily be done using moderate‐size “parent molecules” that contain all the local interactions within a selected distance. If greater accuracy is required, a larger distance is chosen. With the present extension of this approximation, properties of the large molecules, like the electron density, the electrostatic potential, dipole moments, partial charges, and the Hartree–Fock energy are calculated. The accuracy of the method is demonstrated with test cases of medium size by comparing the ADMA results with direct quantum chemical calculations. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1980–1986, 2003

[1]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[2]  Paul G. Mezey,et al.  Quantum similarity measures and Löwdin's transform for approximate density matrices and macromolecular forces , 1997 .

[3]  Darrin M. York,et al.  Electronic structure properties of solvated biomolecules: A quantum approach for macromolecular characterization , 2000 .

[4]  Shridhar R. Gadre,et al.  Molecular Tailoring Approach for Simulation of Electrostatic Properties , 1994 .

[5]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[6]  Brian B. Laird,et al.  Chemical Applications of Density-Functional Theory , 1996 .

[7]  Alain St-Amant A Gaussian Implementation of Yang's Divide-and-Conquer Density-Functional Theory Approach , 1996 .

[8]  K. Merz,et al.  Implementation and Testing of a Frozen Density Matrix−Divide and Conquer Algorithm , 1999 .

[9]  J. B. Collins,et al.  Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets , 1976 .

[10]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[11]  Paul G. Mezey,et al.  Ab Initio Quality Electron Densities for Proteins: A MEDLA Approach , 1994 .

[12]  Ching-Hsing Yu,et al.  Ab Initio Geometry Determinations of Proteins. 1. Crambin , 1998 .

[13]  P K Jadhav,et al.  De novo design and discovery of cyclic HIV protease inhibitors capable of displacing the active-site structural water molecule. , 1998, Pharmaceutical biotechnology.

[14]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[15]  Alistair P. Rendell,et al.  The Potassium Ion Channel: Comparison of Linear Scaling Semiempirical and Molecular Mechanics Representations of the Electrostatic Potential , 2001 .

[16]  S. L. Dixon,et al.  Semiempirical molecular orbital calculations with linear system size scaling , 1996 .

[17]  Paul G. Mezey,et al.  Quantum chemistry of macromolecular shape , 1997 .

[18]  M Elstner,et al.  Quantum mechanics simulation of protein dynamics on long timescale , 2001, Proteins.

[19]  Paul G. Mezey,et al.  Functional Groups in Quantum Chemistry , 1996 .

[20]  M. Daw,et al.  Model for energetics of solids based on the density matrix. , 1993, Physical review. B, Condensed matter.

[21]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[22]  P. C. Hariharan,et al.  Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory , 1974 .

[23]  Kenneth M. Merz,et al.  Divide and Conquer Interaction Energy Decomposition , 1999 .

[24]  R. Carbó,et al.  Molecular quantum similarity measures and N-dimensional representation of quantum objects. I. Theoretical foundations† , 1992 .

[25]  C. F. Matta Theoretical Reconstruction of the Electron Density of Large Molecules from Fragments Determined as Proper Open Quantum Systems: The Properties of the Oripavine PEO, Enkephalins, and Morphine , 2001 .

[26]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[27]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[28]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[29]  Emili Besalú,et al.  On quantum molecular similarity measures (QMSM) and indices (QMSI) , 1996 .

[30]  Weitao Yang,et al.  Electron density as the basic variable: a divide-and-conquer approach to the ab initio computation of large molecules , 1992 .

[31]  Matt Challacombe,et al.  A simplified density matrix minimization for linear scaling self-consistent field theory , 1999 .

[32]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[33]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..

[34]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[35]  C. Carter,et al.  Active Species for the Ground-State Complex of Cytidine Deaminase: A Linear-Scaling Quantum Mechanical Investigation , 1998 .

[36]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[37]  T. Clark,et al.  Higher harmonics in the Josephson effect , 1980 .

[38]  P. Mezey,et al.  Averaged electron densities for averaged conformations , 1998, J. Comput. Chem..

[39]  Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-A resolution. , 1994, The Journal of biological chemistry.

[40]  S. L. Dixon,et al.  Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .

[41]  David R. Bowler,et al.  Practical methods for ab initio calculations on thousands of atoms , 1999 .

[42]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[43]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[44]  P. Mezey,et al.  Fuzzy molecular fragments in drug research , 1997 .

[45]  Paul G. Mezey,et al.  Ab Initio-Quality Electrostatic Potentials for Proteins: An Application of the ADMA Approach , 2002 .

[46]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[47]  Paul G. Mezey,et al.  Macromolecular density matrices and electron densities with adjustable nuclear geometries , 1995 .

[48]  T. Halgren,et al.  Polarizable force fields. , 2001, Current opinion in structural biology.