Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems

In this paper discontinuous Galerkin methods with penalty for solving second-order elliptic problems are considered. Error estimates are studied for these methods. In particular, optimal localized pointwise error estimates are established on quasi-uniform grids in RN (N \ge 2).

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[3]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[4]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[5]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[6]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[7]  Z. Chen,et al.  On the relationship of various discontinuous finite element methods for second-order elliptic equations , 2001, J. Num. Math..

[8]  Rolf Rannacher,et al.  Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems , 2002, J. Num. Math..

[9]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[10]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[11]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[12]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[13]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[14]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[15]  Zhangxin Chen,et al.  Stability and convergence of mixed discontinuous finite element methods for second-order differential problems , 2003, J. Num. Math..

[16]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[17]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[18]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[19]  Zhangxin Chen,et al.  Numerical study of the HP version of mixed discontinuous finite element methods for reaction‐diffusion problems: The 1D case , 2003 .