Fundamentals of the Exact Renormalization Group

Abstract Various aspects of the Exact Renormalization Group (ERG) are explored, starting with a review of the concepts underpinning the framework and the circumstances under which it is expected to be useful. A particular emphasis is placed on the intuitive picture provided for both renormalization in quantum field theory and universality associated with second order phase transitions. A qualitative discussion of triviality, asymptotic freedom and asymptotic safety is presented. Focusing on scalar field theory, the construction of assorted flow equations is considered using a general approach, whereby different ERGs follow from field redefinitions. It is recalled that Polchinski’s equation can be cast as a heat equation, which provides intuition and computational techniques for what follows. The analysis of properties of exact solutions to flow equations includes a proof that the spectrum of the anomalous dimension at critical fixed-points is quantized. Two alternative methods for computing the β -function in λ ϕ 4 theory are considered. For one of these it is found that all explicit dependence on the non-universal differences between a family of ERGs cancels out, exactly. The Wilson–Fisher fixed-point is rediscovered in a rather novel way. The discussion of nonperturbative approximation schemes focuses on the derivative expansion, and includes a refinement of the arguments that, at the lowest order in this approximation, a function can be constructed which decreases monotonically along the flow. A new perspective is provided on the relationship between the renormalizability of the Wilsonian effective action and of correlation functions, following which the construction of manifestly gauge invariant ERGs is sketched, and some new insights are given. Drawing these strands together suggests a new approach to quantum field theory.

[1]  Equivalence of local potential approximations , 2005, hep-th/0503161.

[2]  N. Wschebor,et al.  Calculations on the two-point function of the O ( N ) model , 2007, 0708.0238.

[3]  O. Zanusso,et al.  One loop beta functions and fixed points in higher derivative sigma models , 2009, 0910.0851.

[4]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[5]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[6]  S. Nagy,et al.  Functional renormalization group approach to the sine-Gordon model. , 2009, Physical review letters.

[7]  Michael R. Douglas,et al.  Noncommutative field theory , 2001 .

[8]  Renormalisation of phi4-theory on noncommutative Bbb R2 in the matrix base , 2003, hep-th/0307017.

[9]  H. Gies,et al.  Towards an asymptotic-safety scenario for chiral Yukawa systems , 2009, 0907.0327.

[10]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[11]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[12]  L. Faddeev,et al.  Gauge Fields. Introduction to quantum theory (2-nd edition) , 1991 .

[13]  D. Litim Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.

[14]  V. I. Tokar A new renormalization scheme in the Landau-Ginzburg-Wilson model , 1984 .

[15]  Nicolas Wschebor,et al.  A new method to solve the non-perturbative renormalization group equations , 2006 .

[16]  Non-commutative Renormalization , 2004, 0705.0705.

[17]  D. Gross Applications of the Renormalization Group to High-Energy Physics , 1975 .

[18]  A. Wipf,et al.  Supersymmetry breaking as a quantum phase transition , 2009, 0906.5492.

[19]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[20]  S. Nagy,et al.  Quantum censorship in two dimensions , 2009, 0907.0496.

[21]  H. Osborn,et al.  Reparameterization invariance and RG equations: extension of the local potential approximation , 2009, 0901.0450.

[22]  J. Vidal,et al.  Optimization of the derivative expansion in the nonperturbative renormalization group , 2003 .

[23]  C. Bervillier,et al.  Exact renormalization group equations. An Introductory review , 2000 .

[24]  A. Wipf,et al.  N=1 Wess Zumino Model in d=3 at zero and finite temperature , 2010, 1001.2399.

[25]  Oliver J. Rosten On the renormalization of theories of a scalar chiral superfield , 2008, 0808.2150.

[26]  Zumbach Almost second order phase transitions. , 1993, Physical review letters.

[27]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[28]  S. Elitzur,et al.  Impossibility of spontaneously breaking local symmetries , 1975 .

[29]  K. Wilson,et al.  Finite-lattice approximations to renormalization groups , 1975 .

[30]  Derivative expansion of the renormalization group in O(N) scalar field theory , 1997, hep-th/9704202.

[31]  N. Wschebor,et al.  Correlation functions in the Non Perturbative Renormalization Group and field expansion , 2007, 0704.0258.

[32]  Daniel F. Litim Critical exponents from optimised renormalisation group flows , 2002 .

[33]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[34]  Beta function and infrared renormalons in the exact Wilson renormalization group in Yang-Mills theory , 1996, hep-th/9604114.

[35]  SCHEME INDEPENDENCE AND THE EXACT RENORMALIZATION GROUP , 1994, hep-th/9411122.

[36]  R. Szabo Quantum field theory on noncommutative spaces , 2001, hep-th/0109162.

[37]  Gauge invariant regularisation via SU(N|N) , 2001, hep-th/0106258.

[38]  Gauge invariant regularization in the AdS/CFT correspondence and ghost D-branes , 2006, hep-th/0601114.

[39]  Generalized universality in the massive sine-Gordon model , 2006, hep-th/0611216.

[40]  J. M. Pawlowski,et al.  Flow equations for the BCS-BEC crossover , 2007, cond-mat/0701198.

[41]  A MANIFESTLY GAUGE INVARIANT AND UNIVERSAL CALCULUS FOR SU(N) YANG–MILLS , 2006, hep-th/0602229.

[42]  Kenneth G. Wilson,et al.  Renormalization Group and Strong Interactions , 1971 .

[43]  A. Trombettoni,et al.  Comparison of renormalization group schemes for sine-Gordon-type models , 2009, 0903.5524.

[44]  H. Gies,et al.  Functional renormalization group approach to the BCS‐BEC crossover , 2009, 0907.2193.

[45]  Alexander B. Zamolodchikov,et al.  Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory , 1986 .

[46]  Franz Wegner,et al.  Some invariance properties of the renormalization group , 1974 .

[47]  J. Braun The QCD phase boundary from quark–gluon dynamics , 2008, 0810.1727.

[48]  Critical exponents without the epsilon expansion , 1994, hep-ph/9403324.

[49]  A. Wipf,et al.  Phase Diagram and Fixed-Point Structure of two dimensional N=1 Wess-Zumino Models , 2009, 0907.4229.

[50]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[51]  A. B. Pimenov,et al.  Calculation of two-loop β-function for general N=1 supersymmetric Yang–Mills theory with the higher covariant derivative regularization , 2010 .

[52]  Tim R. Morris The renormalization group and two dimensional multicritical effective scalar field theory , 1995 .

[53]  Oliver J. Rosten Sensitivity of nonrenormalizable trajectories to the bare scale , 2007, 0710.3658.

[54]  Perturbative renormalization and infrared finiteness in the Wilson renormalization group: The Massless scalar case , 1993, hep-th/9301114.

[55]  Exact renormalization group flow equations for free energies and N-point functions in uniform external fields , 1998, hep-th/9801124.

[56]  A. Slavnov Pauli-Villars regularization for non-Abelian gauge theories , 1977 .

[57]  Manifestly gauge invariant QED , 2005, hep-th/0505169.

[58]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[59]  Universality from very general nonperturbative flow equations in QCD , 2006, hep-th/0611323.

[60]  G. Sierra,et al.  Russian doll renormalization group and Kosterlitz–Thouless flows , 2003 .

[61]  Scheme independence to all loops , 2005, hep-th/0511107.

[62]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[63]  P. Kopietz,et al.  Two-loop β-function from the exact renormalization group , 2001 .

[64]  T. Morris On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.

[65]  T. Bakeyev,et al.  Higher covariant derivative regularization revisited , 1996 .

[66]  A generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang–Mills , 2005, hep-th/0507154.

[67]  K. Ulker,et al.  Construction of a Wilson action for the Wess-Zumino model , 2008, 0804.1072.

[68]  O(N) models within the local potential approximation , 1997, hep-th/9701028.

[69]  H. Politzer,et al.  Reliable Perturbative Results for Strong Interactions , 1973 .

[70]  H. Osborn,et al.  Epsilon Expansion for Multicritical Fixed Points and Exact Renormalisation Group Equations , 2007, 0708.2697.

[71]  A. Ilderton,et al.  Physical charges in QED and QCD , 2009, 0910.5395.

[72]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[73]  M. Salmhofer,et al.  Fermionic Renormalization Group Flows: Technique and Theory , 2001 .

[74]  C. Wetterich,et al.  Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition , 2001 .

[75]  Wilson renormalization group for supersymmetric gauge theories and gauge anomalies , 1998, hep-th/9802196.

[76]  S. Diehl,et al.  Particle-hole fluctuations in BCS-BEC crossover , 2008, 0808.0150.

[77]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[78]  Michael Strickland,et al.  Optimization of renormalization group flow , 1999, hep-th/9905206.

[79]  P. Kopietz,et al.  Introduction to the Functional Renormalization Group , 2010 .

[80]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[81]  A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory , 2002, hep-th/0209162.

[82]  P. Strack,et al.  Renormalization group flow for fermionic superfluids at zero temperature , 2008, 0804.3994.

[83]  Daniel F. Litim Derivative expansion and renormalisation group flows , 2001 .

[84]  Howard Georgi,et al.  Lie Algebras in Particle Physics , 1982 .

[85]  J. Gracia-Bond́ıa,et al.  Algebras of distributions suitable for phase‐space quantum mechanics. I , 1988 .

[86]  Vincent Rivasseau,et al.  From Perturbative to Constructive Renormalization , 1991 .

[87]  C. Wetterich,et al.  Three-body loss in lithium from functional renormalization , 2008, 0812.1191.

[88]  C. Kopper,et al.  Perturbative renormalization of QED via flow equations , 1991 .

[89]  P. Bedaque,et al.  Renormalization of the Three-Body System with Short-Range Interactions , 1998, nucl-th/9809025.

[90]  T. Morris,et al.  Exact scheme independence at two loops , 2003, hep-th/0309242.

[91]  M. Salmhofer,et al.  Perturbative renormalization and effective Lagrangians in phi**4 in four-dimensions , 1990 .

[92]  Universality and the renormalisation group , 2005, hep-th/0503096.

[93]  H. Osborn,et al.  Remarks on exact RG equations , 2011, 1108.5340.

[94]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[95]  Geoffrey R. Golner,et al.  Renormalization-Group Calculation of Critical Exponents in Three Dimensions , 1975 .

[96]  Bertrand Delamotte,et al.  An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.

[97]  Constituent quarks from QCD , 1995, hep-ph/9509344.

[98]  A manifestly gauge invariant exact renormalization group , 1998, hep-th/0606181.

[99]  A. Filippov,et al.  Gradient expansion based on the physical RG branch , 1992 .

[100]  K. Wilson Quantum field-theory models in less than 4 dimensions , 1973 .

[101]  I. Nándori,et al.  On the renormalization of the bosonized multi-flavor Schwinger model , 2007, 0707.2745.

[102]  J. Kownacki,et al.  Crumpling transition and flat phase of polymerized phantom membranes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  C. Dominicis,et al.  Potential correlation function duality in statistical mechanics , 1967 .

[104]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[105]  Jean-Paul Blaizot,et al.  Nonperturbative renormalization group and momentum dependence of n-point functions. II. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  H. Gies,et al.  Asymptotic safety of simple Yukawa systems , 2009, 0901.2459.

[107]  G. Zumbach,et al.  The renormalization group in the local potential approximation and its applications to the O ( n) model , 1994 .

[108]  Elements of the Continuous Renormalization Group , 1998, hep-th/9802039.

[109]  J. Braun Thermodynamics of QCD low-energy models and the derivative expansion of the effective action , 2009, 0908.1543.

[110]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[111]  K. E. Newman,et al.  Scaling-field representation of Wilson's exact renormalization-group equation , 1985 .

[112]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[113]  K. Wilson,et al.  Nonlinear renormalization groups , 1974 .

[114]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[115]  J. Hughes,et al.  ß-functions and the exact renormalization group , 1988 .

[116]  K. Aoki INTRODUCTION TO THE NON-PERTURBATIVE RENORMALIZATION GROUP AND ITS RECENT APPLICATIONS , 2000 .

[117]  C. Bervillier,et al.  Analytical approximation schemes for solving exact renormalization group equations in the local potential approximation , 2007, 0706.0990.

[118]  P. Hasenfratz,et al.  The cut-off dependence of the Higgs meson mass and the onset of new physics in the standard model , 1988 .

[119]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[120]  Ulrich Ellwanger Flow equations forN point functions and bound states , 1994 .

[121]  Tim R. Morris Derivative expansion of the exact renormalization group , 1994 .

[122]  R. Gorenflo,et al.  Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction , 2002 .

[123]  Manifestly gauge-invariant QCD , 2006, hep-th/0606189.

[124]  Jean Zinn-Justin,et al.  Quantum field theory in the large N limit: a review , 2003 .

[125]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[126]  A gauge invariant exact renormalisation group. (I) , 1999, hep-th/9910058.

[127]  D. J. Wallace,et al.  Gradient flow and the renormalisation group , 1974 .

[128]  K. Pohlmeyer The Jost-Schroer theorem for zero-mass fields , 1969 .

[129]  P. Mackenzie,et al.  On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics , 1983 .

[130]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[131]  S. Diehl,et al.  Three-body scattering from nonperturbative flow equations , 2007, 0712.2846.

[132]  Oliver J. Rosten General computations without fixing the gauge , 2006, hep-th/0604183.

[133]  R. Percacci,et al.  Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.

[134]  Solutions of renormalization-group flow equations with full momentum dependence. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  H. Grosse,et al.  Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.

[136]  Jens O Andersen Theory of the weakly interacting Bose gas , 2004 .

[137]  Alan D. Sokal,et al.  An improvement of Watson’s theorem on Borel summability , 1980 .

[138]  V. Glasko Inverse problems in mathematical physics , 1984 .

[139]  Renormalization group and functional selfsimilarity in different branches of physics , 1984 .

[140]  Polchinski equation, reparameterization invariance and the derivative expansion , 1997, hep-th/9705129.

[141]  M. Birse Functional renormalization group for two-body scattering , 2008, 0801.2317.

[142]  C. Wetterich,et al.  Average action and the renormalization group equations , 1991 .

[143]  Jean-Paul Blaizot,et al.  Nonperturbative renormalization group and momentum dependence of n-point functions. I. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[144]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[145]  F. Kleefeld,et al.  LETTER TO THE EDITOR: Kurt Symanzik---a stable fixed point beyond triviality , 2005, hep-th/0506142.

[146]  B. Delamotte,et al.  Nonperturbative renormalization-group approach to frustrated magnets , 2004 .

[147]  E. Riedel,et al.  Scaling-field approach to the isotropic N-vector model in three dimensions , 1976 .

[148]  C. Wetterich,et al.  Functional renormalization for trion formation in ultracold fermion gases , 2008, 0809.1675.

[149]  A primer for manifestly gauge invariant computations in SU(N) Yang-Mills , 2005, hep-th/0507166.

[150]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[151]  L. Canet Optimization of field-dependent nonperturbative renormalization group flows , 2004, hep-th/0409300.

[152]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[153]  D. J. Wallace,et al.  Gradient properties of the renormalisation group equations in multicomponent systems , 1975 .

[154]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[155]  J. Vidal,et al.  Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003 .

[156]  Golner Nonperturbative renormalization-group calculations for continuum spin systems. , 1986, Physical review. B, Condensed matter.

[157]  High-accuracy scaling exponents in the local potential approximation , 2007, hep-th/0701172.

[158]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .

[159]  C. Kopper,et al.  Perturbative renormalization of composite operators via flow equations I , 1992 .

[160]  Oliver J. Rosten,et al.  Wilsonian Renormalization of Noncommutative Scalar Field Theory , 2009, 0902.4888.

[161]  P. Stevenson Optimized Perturbation Theory , 1981 .

[162]  A. Wipf,et al.  Flow equation for supersymmetric quantum mechanics , 2008, 0809.4396.

[163]  T. Morris,et al.  Large N and the renormalization group , 1997, hep-th/9704094.

[164]  C. Wetterich,et al.  Efimov effect from functional renormalization , 2008, 0812.0528.

[165]  Exact scheme independence at one loop , 2002, hep-th/0201237.

[166]  F. Saueressig,et al.  Four‐derivative Interactions in Asymptotically Safe Gravity , 2009, 0909.3265.

[167]  J. Greensite The Confinement Problem in Lattice Gauge Theory , 2003, hep-lat/0301023.

[168]  Renormalization-Group Analysis of Layered Sine-Gordon Type Models , 2005, hep-th/0509100.

[169]  C. Wetterich,et al.  Critical phenomena in continuous dimension , 2004 .

[170]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[171]  Peter Hasenfratz,et al.  Renormalization group study of scalar field theories , 1986 .

[172]  R. Percacci Asymptotic safety in gravity and sigma models , 2009, 0910.4951.

[173]  Effective action and phase structure of multi-layer sine-Gordon type models , 2005, hep-th/0509186.

[174]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[175]  C. Wetterich,et al.  Critical Exponents from the Effective Average Action , 1994 .

[176]  S. Nagy,et al.  Effective potential for the massive sine-Gordon model , 2006 .

[177]  C. Bervillier Wilson–Polchinski exact renormalization group equation for O (N) systems: leading and next-to-leading orders in the derivative expansion , 2005, hep-th/0501087.

[178]  Oliver J. Rosten A resummable β-function for massless QED , 2008, 0801.2462.

[179]  C. Wetterich,et al.  Equation of state near the endpoint of the critical line , 1999 .

[180]  Three-dimensional massive scalar field theory and the derivative expansion of the renormalization group , 1996, hep-th/9612117.

[181]  The renormalization group, systems of units and the hierarchy problem , 2004, hep-th/0409199.

[182]  K. Symanzik,et al.  Small distance behaviour in field theory and power counting , 1970 .

[183]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[184]  H. Stanley,et al.  Approximate Renormalization Group Based on the Wegner-Houghton Differential Generator , 1974 .

[185]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[186]  Charges from Dressed Matter: Physics and Renormalisation , 1999, hep-ph/9909262.

[187]  T. Morris Non-compact pure gauge QED in 3D is free , 1995, hep-th/9503225.

[188]  B. Delamotte,et al.  What can be learnt from the nonperturbative renormalization group , 2004 .

[189]  S. Weinberg Asymptotically Safe Inflation , 2009, 0911.3165.

[190]  D. J. Callaway Triviality pursuit: Can elementary scalar particles exist? , 1988 .

[191]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[192]  G. Zumbach,et al.  The local potential approximation of the renormalization group and its applications , 1994 .

[193]  Steven Weinberg,et al.  Critical Phenomena for Field Theorists , 1978 .

[194]  C. Bervillier,et al.  Analytical approximation schemes for solving exact renormalization group equations. II Conformal mappings , 2008, 0802.1970.

[195]  I. Herbut,et al.  renormalization group , 1999 .

[196]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[197]  C. Kopper,et al.  Perturbative renormalization of composite operators via flow equations II: Short distance expansion , 1993 .

[198]  Three Dimensional Conformal Sigma Models , 2007, hep-th/0702188.

[199]  C. Kopper,et al.  Perturbative renormalization of massless φ44 with flow equations , 1994 .

[200]  H. Gies,et al.  Quark confinement from colour confinement , 2007, 0708.2413.

[201]  F. Niedermayer,et al.  Perfect lattice action for asymptotically free theories , 1993, hep-lat/9308004.

[202]  Manfred Salmhofer,et al.  Renormalization: An Introduction , 2007 .

[203]  K. Symanzik A field theory with computable large-momenta behaviour , 1973 .

[204]  K. Wilson The renormalization group and critical phenomena , 1983 .

[205]  Oliver J. Rosten An extension of Pohlmeyer's theorem , 2010, 1005.4680.

[206]  B. Krippa Exact renormalization group flow for ultracold Fermi gases in the unitary limit , 2007, 0704.3984.

[207]  Renormalizability of Effective Scalar Field Theory , 1993, hep-th/9310042.

[208]  Gradient Flows From An Approximation To The Exact Renormalization Group , 1993, hep-th/9310032.

[209]  J. Kondo Resistance Minimum in Dilute Magnetic Alloys , 1964 .

[210]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[211]  Oliver J. Rosten Constraints on an asymptotic safety scenario for the Wess–Zumino model , 2008, 0807.4106.

[212]  Renormalization group limit cycles and field theories for ellipticS-matrices , 2004, hep-th/0403178.

[213]  K. Symanzik Small-distance-behaviour analysis and Wilson expansions , 1971 .

[214]  Oliver J. Rosten Triviality from the exact renormalization group , 2008, 0808.0082.

[215]  Tim R. Morris,et al.  Exact scheme independence , 2000 .

[216]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[217]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[218]  Power-Counting Theorem for Non-Local Matrix Models and Renormalisation , 2003, hep-th/0305066.

[219]  V. Müller Perturbative Renormalization by Flow Equations , 2002 .

[220]  Tim R. Morris,et al.  A manifestly gauge invariant, continuum calculation of the SU(N) Yang-Mills two-loop beta function , 2006 .

[221]  Charges from Dressed Matter: Construction , 1999, hep-ph/9909257.

[222]  Janos Polonyi,et al.  Lectures on the functional renormalization group method , 2001, hep-th/0110026.

[223]  W. Souma,et al.  Rapidly Converging Truncation Scheme of the Exact Renormalization Group , 1998, hep-th/9803056.

[224]  H. Gies,et al.  An asymptotic-safety mechanism for chiral Yukawa systems , 2009, 0910.0395.

[225]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[226]  Renormalizable parameters of the sine-Gordon model , 2006, hep-th/0611061.

[227]  Renormalizability proof for QED based on flow equations , 1996 .

[228]  B. Krippa Nonperturbative Renormalisation Group: Applications to the few and many-body systems , 2009, 0912.3665.