Dorsal gradient networks in the Drosophila embryo.

Here, we describe one of the major maternal regulatory gradients, Dorsal, and threshold outputs of gene expression that result from the graded distribution of this transcription factor. The analysis of a large number of authentic and synthetic target genes suggests that the Dorsal gradient directly specifies at least four, and possibly as many as seven, different thresholds of gene activity and tissue differentiation. These thresholds initiate the differentiation of the three primary embryonic tissues: the mesoderm, neurogenic ectoderm, and dorsal ectoderm. Moreover, primary readouts of the Dorsal gradient create asymmetries that subdivide each tissue into multiple cell types during gastrulation. Dorsal patterning thresholds represent the culmination of one of the most complete gene regulation network known in development, which begins with the asymmetric positioning of the oocyte nucleus within the egg chamber and leads to the localized activation of the Toll-Dorsal signaling pathway in ventral regions of the early embryo.

[1]  G. Campbell,et al.  Transducing the Dpp Morphogen Gradient in the Wing of Drosophila Regulation of Dpp Targets by brinker , 1999, Cell.

[2]  D Kosman,et al.  The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. , 1991, Genes & development.

[3]  Stephen T. Crews,et al.  The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product , 1988, Cell.

[4]  B. Thisse,et al.  Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product , 1991, Cell.

[5]  D Kosman,et al.  Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. , 1991, Science.

[6]  M. Levine,et al.  Individual dorsal morphogen binding sites mediate activation and repression in the Drosophila embryo. , 1992, The EMBO journal.

[7]  S. Burley,et al.  TATA Box Mimicry by TFIID Autoinhibition of Pol II Transcription , 1998, Cell.

[8]  J. Gurdon,et al.  A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Levine,et al.  An anteroposterior Dorsal gradient in the Drosophila embryo. , 1997, Genes & development.

[10]  Eric Wieschaus,et al.  A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation , 1994, Cell.

[11]  M. Levine,et al.  Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. , 2000, Development.

[12]  P. Lawrence,et al.  Hedgehog acts by distinct gradient and signal relay mechanisms to organise cell type and cell polarity in the Drosophila abdomen. , 1997, Development.

[13]  S. Roth Axis Determination: Proteolytic generation of a morphogen , 1994, Current Biology.

[14]  S. Roth Mechanisms of dorsal-ventral axis determination in Drosophila embryos revealed by cytoplasmic transplantations. , 1993, Development.

[15]  Michael Levine,et al.  Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen , 1993, Cell.

[16]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[17]  K. Anderson,et al.  Establishment of dorsal-ventral polarity in the drosophila embryo: The induction of polarity by the Toll gene product , 1985, Cell.

[18]  R. Steward,et al.  The dorsoventral signal transduction pathway and the Rel-like transcription factors in Drosophila. , 1997, Seminars in cancer biology.

[19]  M. Levine,et al.  The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. , 1992, Genes & development.

[20]  G. Jiménez,et al.  Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. , 2000, Genes & development.

[21]  A. Courey,et al.  Dorsal-Mediated Repression Requires the Formation of a Multiprotein Repression Complex at the Ventral Silencer , 1998, Molecular and Cellular Biology.

[22]  M. Levine,et al.  Regulation of even‐skipped stripe 2 in the Drosophila embryo. , 1992, The EMBO journal.

[23]  C. Tickle,et al.  Morphogen gradients in vertebrate limb development. , 1999, Seminars in cell & developmental biology.

[24]  Q Gao,et al.  Targeting gene expression to the head: the Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. , 1998, Development.

[25]  K. Anderson,et al.  A conserved signaling pathway: the Drosophila toll-dorsal pathway. , 1996, Annual review of cell and developmental biology.

[26]  Peter A Lawrence,et al.  Morphogens, Compartments, and Pattern: Lessons from Drosophila? , 1996, Cell.

[27]  F. Schweisguth,et al.  Repression by suppressor of hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. , 2000, Genes & development.

[28]  Michael Levine,et al.  Local inhibition and long-range enhancement of Dpp signal transduction by Sog , 1999, Nature.

[29]  J. Gurdon,et al.  Morphogen gradient interpretation , 2001, Nature.

[30]  M. Levine,et al.  Long-range repression in the Drosophila embryo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Jäckle,et al.  Cooperative DNA‐binding by Bicoid provides a mechanism for threshold‐dependent gene activation in the Drosophila embryo , 1998, The EMBO journal.

[32]  M. Levine,et al.  Transcriptional regulation of a pair-rule stripe in Drosophila. , 1991, Genes & development.

[33]  M. Levine,et al.  Multiple modes of dorsal‐bHLH transcriptional synergy in the Drosophila embryo. , 1995, The EMBO journal.

[34]  S. Roth,et al.  The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. , 1999, Development.

[35]  E. Bier,et al.  Creation of a Sog morphogen gradient in the Drosophila embryo. , 2002, Developmental cell.

[36]  A. Carmena,et al.  Neurogenic genes control gene expression at the transcriptional level in early neurogenesis and in mesectoderm specification. , 1995, Development.

[37]  Wolfgang Driever,et al.  Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen , 1989, Nature.

[38]  R. Tjian,et al.  TAFII mutations disrupt Dorsal activation in the Drosophila embryo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Levine,et al.  dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. , 1992, Genes & development.

[40]  G. Struhl,et al.  Direct and Long-Range Action of a DPP Morphogen Gradient , 1996, Cell.

[41]  G. Struhl,et al.  Direct and Long-Range Action of a Wingless Morphogen Gradient , 1996, Cell.

[42]  L. Stevens,et al.  Spatially Restricted Expression of pipe in the Drosophila Egg Chamber Defines Embryonic Dorsal–Ventral Polarity , 1998, Cell.

[43]  M. Levine,et al.  Interactions between dorsal and helix-loop-helix proteins initiate the differentiation of the embryonic mesoderm and neuroectoderm in Drosophila. , 1993, Genes & development.

[44]  S. Crews,et al.  Specification of the Drosophila CNS midline cell lineage: direct control of single-minded transcription by dorsal/ventral patterning genes. , 1998, Gene expression.

[45]  C. Hashimoto,et al.  Signal transduction by a protease cascade. , 1999, Trends in cell biology.

[46]  J. D. Huang,et al.  Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. , 1991, Genes & development.

[47]  M. Levine,et al.  Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. , 1996, Genes & development.

[48]  N. Perrimon,et al.  Recent advances in understanding signal transduction pathways in worms and flies. , 1996, Current opinion in cell biology.

[49]  P. Lieberman,et al.  Dorsal-ventral patterning in Drosophila: DNA binding of snail protein to the single-minded gene. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  E. Wieschaus,et al.  The Drosophila Gene brinker Reveals a Novel Mechanism of Dpp Target Gene Regulation , 1999, Cell.

[51]  M. Levine,et al.  Spatial regulation of zerknüllt: a dorsal-ventral patterning gene in Drosophila. , 1989, Genes & development.

[52]  A. Courey,et al.  A direct contact between the dorsal rel homology domain and Twist may mediate transcriptional synergy , 1997, Molecular and cellular biology.

[53]  Eric H Davidson,et al.  Modeling DNA sequence-based cis-regulatory gene networks. , 2002, Developmental biology.

[54]  Peter W. Markstein,et al.  Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Leptin twist and snail as positive and negative regulators during Drosophila mesoderm development. , 1991, Genes & development.

[56]  C Q Doe,et al.  Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. , 1998, Genes & development.

[57]  Z. Paroush,et al.  Conversion of dorsal from an activator to a repressor by the global corepressor Groucho. , 1997, Genes & development.

[58]  T. Schüpbach,et al.  EGF receptor signaling in Drosophila oogenesis. , 1999, Current topics in developmental biology.

[59]  Dana L. Smith,et al.  A molecular mechanism for combinatorial control in yeast: MCM1 protein sets the spacing and orientation of the homeodomains of an α2 dimer , 1992, Cell.

[60]  B. Shilo,et al.  Vein expression is induced by the EGF receptor pathway to provide a positive feedback loop in patterning the Drosophila embryonic ventral ectoderm. , 1999, Genes & development.

[61]  M. Levine,et al.  Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. , 1996, Current opinion in genetics & development.

[62]  Y. Jan,et al.  rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. , 1990, Genes & development.

[63]  B. Thisse,et al.  Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. , 1988, The EMBO journal.

[64]  M. Strigini,et al.  Formation of morphogen gradients in the Drosophila wing. , 1999, Seminars in cell & developmental biology.

[65]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[66]  J. D. Huang,et al.  The establishment and interpretation of transcription factor gradients in the Drosophila embryo. , 1995, Biochimica et biophysica acta.