Theoretical Dynamical Studies of Metal Clusters and Cluster-Ligand Systems

Metal-ligand interactions constitute the subject of a variety of disciplines that include organo- and inorganometallic chemistry, surface science, and the rapidly developing field of cluster research. In what follows we use the term clusterto designate a cohesive group of like atoms (molecules), i.e., bare (“neet”, “naked”) clusters. More generally, the term is also used for organo- and inorganometallic compounds, i.e., ligated clusters. Although the approaches and techniques used by the various disciplines to study metal-ligand interactions are quite different, many of the central subjects and issues are common for them. The common subjects include possible geometric structures and isomeric forms, structural (isomerization) transitions, stability, fluxionality, structure-reactivity correlation (or lack of it), role of coordination, etc. However, the precise interpretation of these issues and the details emphasized by the different disciplines are dictated by the nature of the objects studied and may not, therefore, be identical. For example, questions regarding structures, isomerization transitions, fluxionality or even melting of metal clusters refer to the state and properties of the metal network itself. The same questions, when asked in connection with organo- and inorganometallic compounds, often refer to the arrangements and rearrangements of the ligands attached to a metal framework of a fixed structure. Of course, when required, the state of and changes in the metal framework are considered as well. The fields of metalcontaining molecular compounds, surface science, and physics and chemistry of clusters furnish complementary information on a broad variety of metal-ligand systems. A comprehensive understanding of the nature and properties of these systems, as defined by the type and number of metal atoms and ligands involved, can be achieved only through a mutual awareness of and continuing progress in all of these research areas.

[1]  V. Zoran,et al.  Topics in atomic and nuclear collisions , 1994 .

[2]  R. Kelley,et al.  Neutron vibrational spectroscopy of hydrogen and deuterium on Raney nickel , 1982 .

[3]  J. W. Humberston Classical mechanics , 1980, Nature.

[4]  A. Depristo,et al.  The structure of NiN and PdN clusters: 4≤N≤23 , 1992 .

[5]  B. C. Garrett,et al.  Embedded diatomics-in-molecules: a method to include delocalized electronic interactions in the treatment of covalent chemical reactions at metal surfaces , 1989 .

[6]  James D. Louck,et al.  Eckart vectors, Eckart frames, and polyatomic molecules , 1976 .

[7]  E. K. Parks,et al.  Physisorption of deuterium on deuterated nickel clusters , 1993 .

[8]  J. Jellinek,et al.  Melting of Nickel Clusters , 1991 .

[9]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .

[10]  J. Jellinek,et al.  Separation of the energy of overall rotation in any N-body system. , 1989, Physical review letters.

[11]  B. K. Rao,et al.  Physics and Chemistry of Finite Systems: From Clusters to Crystals , 1992 .

[12]  Arthur F. Voter,et al.  Accurate Interatomic Potentials for Ni, Al and Ni3Al , 1986 .

[13]  B. Pullman,et al.  Large Finite Systems , 1987 .

[14]  J. Jellinek,et al.  Collisions of molecules with clusters: A quasiclassical study , 1994 .

[15]  J. Jellinek,et al.  Structural and dynamical properties of transition metal clusters , 1991 .

[16]  J. Jellinek Dynamics for nonconservative systems: ergodicity beyond the microcanonical ensemble , 1988 .

[17]  G. Seifert,et al.  Nuclear heavy-ion and atomic cluster-cluster collisions , 1992 .

[18]  J. Jellinek,et al.  The D2+Ni13 Reaction: Mode-Specific and Structure-Specific Features , 1992 .

[19]  D. Salahub,et al.  Local and nonlocal density functional study of Ni4 and Ni5 clusters. Models for the chemisorption of hydrogen on (111) and (100) nickel surfaces , 1991 .

[20]  E. Carter,et al.  Ab initio molecular dynamics simulated annealing at the generalized valence bond level. Application to a small nickel cluster , 1993 .

[21]  I. Hertel,et al.  Proton transfer in ammonia cluster cations: molecular dynamics in a self consistent field , 1991 .

[22]  K. Raghavan,et al.  Ni clusters: structures and reactivity with D2 , 1989 .

[23]  J. Jellinek,et al.  Cluster-molecule systems: Analysis and tuning of the interaction potential , 1993 .

[24]  U. Landman,et al.  The energetics and structure of nickel clusters: Size dependence , 1991 .

[25]  J. Jellinek,et al.  Peculiarities of structures and meltinglike transition in gold clusters , 1993 .

[26]  Michael J. Davis,et al.  Unimolecular reactions and phase space bottlenecks , 1986 .

[27]  W. Ho,et al.  Angle‐resolved and variable impact energy electron vibrational excitation spectroscopy of molecules adsorbed on surfaces , 1980 .

[28]  Cheng,et al.  Surface melting of clusters and implications for bulk matter. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[30]  J. Jellinek,et al.  Rotating clusters: centrifugal distortion, isomerization, fragmentation , 1989 .

[31]  G. Pacchioni,et al.  Elemental and Molecular Clusters , 1988 .

[32]  R. Berry,et al.  Melting of clusters and melting , 1984 .

[33]  J. Jellinek,et al.  Surface melting in Ni55 , 1993 .

[34]  J. Jellinek,et al.  Vibrations of rapidly rotating N-body systems , 1990 .

[35]  Vesely,et al.  Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. , 1986, Physical review. A, General physics.

[36]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[37]  B. Legrand,et al.  Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model , 1989 .

[38]  R. Levine,et al.  Mode Selective Chemistry , 1991 .

[39]  E. K. Parks,et al.  The structure of small nickel clusters. I. Ni3–Ni15 , 1994 .

[40]  Hellmut Haberland,et al.  Clusters of Atoms and Molecules II , 1994 .

[41]  W. Andreoni,et al.  Structural and electronic properties of sodium microclusters (n=2–20) at low and high temperatures: New insights from ab initio molecular dynamics studies , 1991 .

[42]  Phase changes in nickel clusters from an embedded-atom potential , 1992 .

[43]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[44]  E. Carter,et al.  Multiple time scale Hartree–Fock molecular dynamics , 1993 .

[45]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[46]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[47]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[48]  Andreoni,et al.  Melting of small gold particles: Mechanism and size effects. , 1991, Physical review letters.

[49]  L. Raff,et al.  Quasiclassical selection of initial coordinates and momenta for a rotating Morse oscillator , 1975 .

[50]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[51]  A. Khinchin Mathematical foundations of statistical mechanics , 1949 .

[52]  William H. Press,et al.  Numerical recipes , 1990 .

[53]  F. Ducastelle Modules élastiques des métaux de transition , 1970 .

[54]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[55]  E. K. Parks,et al.  Temperature dependence of the reaction of nickel clusters with deuterium , 1993 .

[56]  M. Dupuis,et al.  Ab initio SCF molecular dynamics: Exploring the potential energy surface of small silicon clusters , 1992 .

[57]  Raju P. Gupta Lattice relaxation at a metal surface , 1981 .

[58]  U. Landman,et al.  Born-Oppenheimer dynamics using density-functional theory: Equilibrium and fragmentation of small sodium clusters , 1991 .

[59]  J. Farges,et al.  Structural study of CH4, CO2 and H2O clusters containing from several tens to several thousands of molecules , 1989 .

[60]  I. Z. Fisher,et al.  Statistical theory of liquids , 1964 .

[61]  Berry,et al.  Generalization of Nosé's isothermal molecular dynamics: Necessary and sufficient conditions of dynamical simulations of statistical ensembles. , 1989, Physical review. A, General physics.

[62]  J. Farges,et al.  Stability of relaxed Lennard-Jones models made of 500 to 6000 atoms , 1989 .

[63]  Thomas L. Beck,et al.  Solid–liquid phase changes in simulated isoenergetic Ar13 , 1986 .

[64]  Jellinek,et al.  Fragmentation of atomic clusters: A theoretical study. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[65]  J. Farges,et al.  From Five-Fold to Crystalline Symmetry in Large Clusters , 1987 .

[66]  Ab initio Hartree–Fock self‐consistent‐field molecular dynamics study of structure and dynamics of Li8 , 1994 .