Hysteresis Inverse Iterative Learning Control of Piezoactuators in AFM

Abstract We consider the application of iterative learning control (ILC) in which the input update law exploits an inverse model of the hysteresis behavior for piezoactuators. Compared to ILC for hysteresis that updates the control input using the measured tracking error scaled by a constant (fixed) learning gain, the proposed ILC algorithm converges more rapidly. The approach is analyzed and experimental results are presented to demonstrate the method's ability for precision output tracking.

[1]  Robert C. Rogers,et al.  Control of a hysteretic actuator using inverse hysteresis compensation , 1998, Smart Structures.

[2]  F. Miyazaki,et al.  Bettering operation of dynamic systems by learning: A new control theory for servomechanism or mechatronics systems , 1984, The 23rd IEEE Conference on Decision and Control.

[3]  Eric S. Snow,et al.  Nanofabrication with proximal probes , 1996 .

[4]  Yong Li,et al.  Motion control of an electrostrictive actuator , 2004 .

[5]  Qingze Zou,et al.  Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators , 2007, IEEE Transactions on Control Systems Technology.

[6]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[7]  Ulrich Kunze,et al.  Invited Review Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope , 2002 .

[8]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[9]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[10]  Santosh Devasia,et al.  Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes , 2006 .

[11]  Hyungsuck Cho,et al.  A robust visual seam tracking system for robotic arc welding , 1996 .

[12]  Anja Boisen,et al.  Fabrication and characterization of nanoresonating devices for mass detection , 2000 .

[13]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[14]  Xiaobo Tan,et al.  Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators , 2005, IEEE Transactions on Automatic Control.

[15]  Thierry Baron,et al.  Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication , 2003 .

[16]  A. Forchel,et al.  Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling. , 2003, Physical review letters.

[17]  Ajay P. Malshe,et al.  Nanoscale dislocation patterning by ultralow load indentation , 2005 .

[18]  R. Barrett,et al.  Optical scan‐correction system applied to atomic force microscopy , 1991 .

[19]  M. Gopal,et al.  Control Systems: Principles and Design , 2006 .

[20]  Lydia L. Sohn,et al.  Fabrication of nanostructures using atomic‐force‐microscope‐based lithography , 1995 .

[21]  Masaaki Fujii,et al.  Nanometer scale marker for fluorescent microscopy , 2005 .

[23]  P M Campbell,et al.  Proximal probe-based fabrication of nanostructures , 1996 .

[24]  Shen Dong,et al.  Investigation on AFM-based micro/nano-CNC machining system , 2007 .

[25]  Kevin L. Moore,et al.  Iterative learning control: A survey and new results , 1992, J. Field Robotics.

[26]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[27]  G. Tchoupo,et al.  Hysteresis Compensation for High-Precision Positioning of a Shape Memory Alloy Actuator using Integrated Iterative-Feedforward and Feedback Inputs , 2007, 2007 American Control Conference.

[28]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[29]  A. Visintin Models of hysteresis , 1993 .

[30]  Ralph C. Smith,et al.  Partial and full inverse compensation for hysteresis in smart material systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[31]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[32]  Martin Holland,et al.  Nanolithography with an atomic force microscope for integrated fabrication of quantum electronic devices , 1994 .

[33]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[34]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[35]  David W. L. Wang,et al.  Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).