Microwave dielectric properties of YAG ceramics prepared by sintering pyrolysised nano-sized powders

[1]  J. Binner,et al.  A comparative study of the synthesis of nanocrystalline Yttrium Aluminium Garnet using sol-gel and co-precipitation methods , 2014 .

[2]  M. Sebastian,et al.  The effect of Ga3+ addition on the sinterability and microwave dielectric properties of RE3Al5O12 (Tb3+, Y3+, Er3+ and Yb3+) garnet ceramics , 2014 .

[3]  J. Chevalier,et al.  Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics , 2012 .

[4]  Shiqing Xu,et al.  Effects of Al2O3 addition on the sintering behavior and microwave dielectric properties of CaSiO3 ceramics , 2012 .

[5]  Feng-sheng Li,et al.  Characterization and Luminescence Properties of YAG: Ce3+ Phosphors by Molten Salt Synthesis , 2012 .

[6]  Songping Wu,et al.  Synthesis and Microwave Dielectric Properties of Sm2SiO5 Ceramics , 2012 .

[7]  Hong Wang,et al.  Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) Lyonsite‐Related‐Type Ceramics with Ultra‐Low Sintering Temperatures , 2011 .

[8]  Shengming Zhou,et al.  Fabrication of Nd:YAG transparent ceramics with TEOS, MgO and compound additives as sintering aids , 2010 .

[9]  M. Sebastian,et al.  Microwave Dielectric Properties of SrRE4Si3O13 (RE=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, and Y) Ceramics , 2009 .

[10]  K. Kakimoto,et al.  Microwave Dielectric Properties of YAG Ceramics , 2009 .

[11]  D. Tang,et al.  Fabrication of yttrium aluminum garnet transparent ceramics from yttria nanopowders synthesized by carbonate precipitation , 2009 .

[12]  S. Nahm,et al.  Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics , 2008 .

[13]  Yating Wu,et al.  Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant , 2008 .

[14]  S. Hosokawa,et al.  Defect structure of rare earth aluminium garnets obtained by the glycothermal method , 2008 .

[15]  Hui Sun,et al.  A new microwave ceramic with low-permittivity for LTCC applications , 2008 .

[16]  Xuying Chen,et al.  Effects of Mg/Si Ratio on Microwave Dielectric Characteristics of Forsterite Ceramics , 2007 .

[17]  Jiangtao Li,et al.  Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method , 2007 .

[18]  Gary L. Messing,et al.  Solid‐State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics , 2006 .

[19]  P. Palmero,et al.  Comparison among different sintering routes for preparing alumina-YAG nanocomposites , 2006 .

[20]  Dong‐Wan Kim,et al.  Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds , 2006 .

[21]  Yusuke Moriyoshi,et al.  Fabrication of Transparent Yttria Ceramics by the Low Temperature Synthesis of Yttrium Hydroxide , 2004 .

[22]  Hong Liu,et al.  Preparation of YAG:Nd nano-sized powder by co-precipitation method , 2004 .

[23]  L. Wen,et al.  Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics , 2004 .

[24]  A. Pradhan,et al.  Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics , 2004 .

[25]  H. Ohsato,et al.  Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics , 2003 .

[26]  Michael E. Tobar,et al.  Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures , 1999 .

[27]  E. El-Shereafy,et al.  Mechanism of thermal decomposition and γ-pyrolysis of aluminum nitrate nonahydrate [Al(NO3)3·9H2O] , 1998 .

[28]  I. R. Harris,et al.  Precipitate identification in Ti-doped YAlO3 single crystals , 1997 .