The impact of nutrition on intestinal bacterial communities.

[1]  T. Schmidt,et al.  Variable responses of human microbiomes to dietary supplementation with resistant starch , 2016, Microbiome.

[2]  Martin J. Blaser,et al.  Antibiotics, birth mode, and diet shape microbiome maturation during early life , 2016, Science Translational Medicine.

[3]  Nitin Kumar,et al.  Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation , 2016, Nature.

[4]  Morris A. Swertz,et al.  Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity , 2016, Science.

[5]  J. Raes,et al.  Population-level analysis of gut microbiome variation , 2016, Science.

[6]  H. Gaskins,et al.  H2 metabolism is widespread and diverse among human colonic microbes , 2016, Gut microbes.

[7]  A. Braune,et al.  Bacterial species involved in the conversion of dietary flavonoids in the human gut , 2016, Gut microbes.

[8]  S. Duncan,et al.  Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes , 2016, Microbial genomics.

[9]  J. Parkhill,et al.  Wheat bran promotes enrichment within the human colonic microbiota of butyrate‐producing bacteria that release ferulic acid , 2016, Environmental microbiology.

[10]  J. Parkhill,et al.  Modulation of the human gut microbiota by dietary fibres occurs at the species level , 2016, BMC Biology.

[11]  P. Hylemon,et al.  Consequences of bile salt biotransformations by intestinal bacteria , 2016, Gut microbes.

[12]  R. Follador,et al.  Iron Modulates Butyrate Production by a Child Gut Microbiota In Vitro , 2015, mBio.

[13]  B. Henrissat,et al.  Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii , 2015, mBio.

[14]  B. White,et al.  Ruminococcal cellulosome systems from rumen to human. , 2015, Environmental microbiology.

[15]  H. Flint,et al.  Modelling the emergent dynamics and major metabolites of the human colonic microbiota. , 2015, Environmental microbiology.

[16]  V. de Crécy-Lagard,et al.  Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes , 2015, Front. Genet..

[17]  Leo Lahti,et al.  Fat, Fiber and Cancer Risk in African Americans and Rural Africans , 2015, Nature Communications.

[18]  Kyle Bittinger,et al.  Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production , 2014, Gut.

[19]  H. Flint,et al.  ‘ Diet, gut microbiology and human health , 2015 .

[20]  A. Goesmann,et al.  Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota ('Ruminococcus bicirculans') reveals two chromosomes and a selective capacity to utilize plant glucans. , 2014, Environmental microbiology.

[21]  Stefanie Widder,et al.  Deciphering microbial interactions and detecting keystone species with co-occurrence networks , 2014, Front. Microbiol..

[22]  J. Salojärvi,et al.  Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men , 2014, The ISME Journal.

[23]  Amanda G. Henry,et al.  Gut microbiome of the Hadza hunter-gatherers , 2014, Nature Communications.

[24]  H. Flint,et al.  Phylogenetic distribution of three pathways for propionate production within the human gut microbiota , 2014, The ISME Journal.

[25]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[26]  Mathieu Almeida,et al.  Dietary intervention impact on gut microbial gene richness , 2013, Nature.

[27]  P. Bork,et al.  Richness of human gut microbiome correlates with metabolic markers , 2013, Nature.

[28]  E. Zoetendal,et al.  Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. , 2013, The American journal of clinical nutrition.

[29]  Bernard Henrissat,et al.  The abundance and variety of carbohydrate-active enzymes in the human gut microbiota , 2013, Nature Reviews Microbiology.

[30]  H. Flint,et al.  Colonic bacterial metabolites and human health. , 2013, Current opinion in microbiology.

[31]  H. Flint,et al.  Some are more equal than others , 2013, Gut microbes.

[32]  W. D. de Vos,et al.  Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women , 2012, Gut.

[33]  I. Martínez,et al.  Gut microbiome composition is linked to whole grain-induced immunological improvements , 2012, The ISME Journal.

[34]  M. Li,et al.  Structural Changes of Gut Microbiota during Berberine-Mediated Prevention of Obesity and Insulin Resistance in High-Fat Diet-Fed Rats , 2012, PloS one.

[35]  D. Sinderen,et al.  Gut microbiota composition correlates with diet and health in the elderly , 2012, Nature.

[36]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[37]  H. Flint,et al.  Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon , 2012, The ISME Journal.

[38]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[39]  Tetsuya Hayashi,et al.  Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. , 2011, Gastroenterology.

[40]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[41]  I. Martínez,et al.  Barcoded Pyrosequencing Reveals That Consumption of Galactooligosaccharides Results in a Highly Specific Bifidogenic Response in Humans , 2011, PloS one.

[42]  H. Gaskins,et al.  Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon , 2011, The ISME Journal.

[43]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[44]  H. Flint,et al.  High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. , 2011, The American journal of clinical nutrition.

[45]  J. Parkhill,et al.  Dominant and diet-responsive groups of bacteria within the human colonic microbiota , 2011, The ISME Journal.

[46]  Jaehyoung Kim,et al.  Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects , 2010, PloS one.

[47]  C. Lebrilla,et al.  Human milk glycobiome and its impact on the infant gastrointestinal microbiota , 2010, Proceedings of the National Academy of Sciences.

[48]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[49]  P. Louis,et al.  Life in the Gut: Microbial responses to Stress in the Gastrointestinal Tract , 2010, Science progress.

[50]  Alan W Walker,et al.  The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. , 2008, Environmental microbiology.

[51]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[52]  G. Holtrop,et al.  Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii , 2008, British Journal of Nutrition.

[53]  B. White,et al.  Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis , 2008, Nature Reviews Microbiology.

[54]  P. Freestone,et al.  Influence of dietary catechols on the growth of enteropathogenic bacteria. , 2007, International journal of food microbiology.

[55]  Harry J Flint,et al.  Interactions and competition within the microbial community of the human colon: links between diet and health. , 2007, Environmental microbiology.

[56]  H. Flint,et al.  Reduced Dietary Intake of Carbohydrates by Obese Subjects Results in Decreased Concentrations of Butyrate and Butyrate-Producing Bacteria in Feces , 2006, Applied and Environmental Microbiology.

[57]  Gerald E. Lobley,et al.  Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut , 2006, Applied and Environmental Microbiology.

[58]  H. Flint,et al.  pH and Peptide Supply Can Radically Alter Bacterial Populations and Short-Chain Fatty Acid Ratios within Microbial Communities from the Human Colon , 2005, Applied and Environmental Microbiology.

[59]  E. Vicaut,et al.  The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. , 2004, The American journal of clinical nutrition.

[60]  S. Lewis,et al.  Increasing butyrate concentration in the distal colon by accelerating intestinal transit , 1997, Gut.

[61]  F. Bornet,et al.  Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. , 1996, Gut.

[62]  H. Flint,et al.  Formation of propionate and butyrate by the human colonic microbiota. , 2017, Environmental microbiology.