Glycerol hydrogenolysis into useful C3 chemicals

[1]  J. Barbier,et al.  Polyol Conversion by Liquid Phase Heterogeneous Catalysis Over Metals , 1988 .

[2]  L. Hoang,et al.  Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium , 1991 .

[3]  S. J. Singer,et al.  Computational analysis of the potential energy surfaces of glycerol in the gas and aqueous phases: effects of level of theory, basis set, and solvation on strongly intramolecularly hydrogen-bonded systems. , 2001, Journal of the American Chemical Society.

[4]  Peter Claus,et al.  Identification of active sites in gold-catalyzed hydrogenation of acrolein. , 2003, Journal of the American Chemical Society.

[5]  W. Ueda,et al.  Structural organization of catalytic functions in Mo-based oxides for propane selective oxidation , 2004 .

[6]  Tsunehiro Tanaka,et al.  Selective photo-oxidation of various hydrocarbons in the liquid phase over V2O5/Al2O3 , 2004 .

[7]  Matti Parikka,et al.  Global biomass fuel resources , 2004 .

[8]  Julien Chaminand,et al.  Glycerol hydrogenolysis on heterogeneous catalysts , 2004 .

[9]  W. Ueda,et al.  Structure dependency of Mo-V-O-based complex oxide catalysts in the oxidations of hydrocarbons , 2004 .

[10]  W. Ueda,et al.  Crystalline MoVO based complex oxides as selective oxidation catalysts of propane , 2005 .

[11]  Satoshi Sato,et al.  Synthesis of α-hydroxyketones from 1,2-diols over Cu-based catalyst , 2005 .

[12]  Heiji Enomoto,et al.  Conversion of glycerin into lactic acid by alkaline hydrothermal reaction , 2005 .

[13]  P. Claus,et al.  Hydrogenations over Silver: A Highly Active and Chemoselective Ag‐In/SiO2 Catalyst for the One‐Step Synthesis of Allyl Alcohol from Acrolein , 2005 .

[14]  Alvise Perosa,et al.  Selective Hydrogenolysis of Glycerol with Raney Nickel , 2005 .

[15]  Galen J. Suppes,et al.  Low-pressure hydrogenolysis of glycerol to propylene glycol , 2005 .

[16]  Tomohisa Miyazawa,et al.  Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism , 2006 .

[17]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[18]  M. Pagliaro,et al.  From glycerol to value-added products. , 2007, Angewandte Chemie.

[19]  Tomohisa Miyazawa,et al.  Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen , 2007 .

[20]  Robert J. Davis,et al.  Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts , 2007 .

[21]  Haiyan Fu,et al.  Effect of base additives on the selective hydrogenolysis of glycerol over Ru/TiO2 catalyst , 2007 .

[22]  Tomohisa Miyazawa,et al.  Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin , 2007 .

[23]  G. Suppes,et al.  Reducing Byproduct Formation during Conversion of Glycerol to Propylene Glycol , 2008 .

[24]  Long Huang,et al.  Continuous production of 1,2‐propanediol by the selective hydrogenolysis of solvent‐free glycerol under mild conditions , 2008 .

[25]  G. Lu,et al.  Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. , 2008, Chemical Society reviews.

[26]  P. S. Prasad,et al.  Selective Hydrogenolysis of Glycerol to 1, 2 Propanediol Over Cu–ZnO Catalysts , 2008 .

[27]  G. Suppes,et al.  Low-pressure packed-bed gas phase conversion of glycerol to acetol , 2008 .

[28]  Y. Sasaki,et al.  Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2 , 2008 .

[29]  Satoshi Sato,et al.  Vapor-phase reaction of polyols over copper catalysts , 2008 .

[30]  J. Barrault,et al.  Design of new solid catalysts for the selective conversion of glycerol , 2008 .

[31]  Arno Behr,et al.  Improved utilisation of renewable resources: New important derivatives of glycerol , 2008 .

[32]  P. Jacobs,et al.  Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen. , 2008, Chemical communications.

[33]  S. Paul,et al.  Towards the sustainable production of acrolein by glycerol dehydration. , 2009, ChemSusChem.

[34]  Yulei Zhu,et al.  Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12O40/SiO2 in Vapor Phase , 2009 .

[35]  Masahiro Yokota,et al.  Dehydration–hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure , 2009 .

[36]  K. Tomishige,et al.  Promoting Effect of Re Addition to Rh/SiO2 on Glycerol Hydrogenolysis , 2009 .

[37]  Yalei Zhang,et al.  Effect of Alkaline Catalysts on Hydrothermal Conversion of Glycerin into Lactic Acid , 2009 .

[38]  J. Ellman,et al.  An efficient didehydroxylation method for the biomass-derived polyols glycerol and erythritol. Mechanistic studies of a formic acid-mediated deoxygenation. , 2009, Chemical communications.

[39]  Satoshi Sato,et al.  Catalytic dehydration of 1,2-propanediol into propanal , 2009 .

[40]  Satoshi Sato,et al.  Selective Conversion of Glycerol into 1,2-Propanediol at Ambient Hydrogen Pressure , 2009 .

[41]  P. Claus,et al.  Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2-Al2O3 catalysts , 2009 .

[42]  F. Mauriello,et al.  Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen , 2009 .

[43]  B. Han,et al.  Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids , 2009 .

[44]  Junhua Wang,et al.  Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. , 2010, Bioresource technology.

[45]  K. Tomishige,et al.  Hydrogenolysis of 1,2-propanediol for the production of biopropanols from glycerol. , 2010, ChemSusChem.

[46]  K. Tomishige,et al.  Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water , 2010 .

[47]  Yunjie Ding,et al.  Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media , 2010 .

[48]  J. Ellman,et al.  A direct, biomass-based synthesis of benzoic acid: formic acid-mediated deoxygenation of the glucose-derived materials quinic acid and shikimic acid. , 2010, ChemSusChem.

[49]  A. Lu,et al.  From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. , 2010, Chemical communications.

[50]  K. Tomishige,et al.  Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst , 2010 .

[51]  I. Kozhevnikov,et al.  Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt , 2010 .

[52]  Jean-Luc Dubois,et al.  Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts , 2010 .

[53]  R. Augustine,et al.  Selective Conversion of Glycerol to Propylene Glycol Over Fixed Bed Raney® Cu Catalysts , 2010 .

[54]  Ainhoa Alonso-Vicario,et al.  Synthesis of Lactic Acid by Alkaline Hydrothermal Conversion of Glycerol at High Glycerol Concentration , 2010 .

[55]  Xinwen Guo,et al.  Selective hydrogenolysis of glycerol to propanediols on supported Cu-containing bimetallic catalysts , 2010 .

[56]  Mina Song,et al.  Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor , 2010 .

[57]  J. Fierro,et al.  Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism , 2010 .

[58]  S. Paul,et al.  Glycerol dehydration to acrolein in the context of new uses of glycerol , 2010 .

[59]  Haichao Liu,et al.  Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au-Pt/TiO2 catalysts. , 2010, Chemistry.

[60]  Z. Hou,et al.  Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors , 2011 .

[61]  K. Tomishige,et al.  Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst , 2011 .

[62]  H. Friedrich,et al.  Direct Hydrogenolysis of Highly Concentrated Glycerol Solutions Over Supported Ru, Pd and Pt Catalyst Systems , 2011 .

[63]  P. Fongarland,et al.  Selective catalytic oxidation of glycerol: perspectives for high value chemicals , 2011 .

[64]  Raghunath V. Chaudhari,et al.  Cu-Based Catalysts Show Low Temperature Activity for Glycerol Conversion to Lactic Acid , 2011 .

[65]  T. Tago,et al.  Investigation of reaction routes for direct conversion of glycerol over zirconia–iron oxide catalyst , 2011 .

[66]  Seung Hwan Lee,et al.  Studies on the conversion of glycerol to 1,2-propanediol over Ru-based catalyst under mild conditions , 2011 .

[67]  Weiguo Song,et al.  Glycerol Hydrogenolysis over Co Catalysts Derived from a Layered Double Hydroxide Precursor , 2011 .

[68]  Junhua Wang,et al.  Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts , 2011 .

[69]  U. Hanefeld,et al.  Renewable Chemicals: Dehydroxylation of Glycerol and Polyols , 2011, ChemSusChem.

[70]  Hyunjoon Lee,et al.  Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia , 2011 .

[71]  M. Barteau,et al.  Kinetics, Selectivity, and Deactivation in the Aldol Condensation of Acetaldehyde on Anatase Titanium Dioxide , 2011 .

[72]  M. D. Soriano,et al.  Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid , 2011 .

[73]  P. Claus,et al.  Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: Correlation between the copper surface area and the catalyst's activity , 2011 .

[74]  Yoshinao Nakagawa,et al.  Heterogeneous catalysis of the glycerol hydrogenolysis , 2011 .

[75]  T. Rirksomboon,et al.  Catalytic dehydroxylation of glycerol to propylene glycol over Cu–ZnO/Al2O3 catalysts: Effects of catalyst preparation and deactivation , 2011 .

[76]  H. Friedrich,et al.  A catalytic route to lower alcohols from glycerol using Ni-supported catalysts , 2011 .

[77]  Catherine Pinel,et al.  On the role of the atmosphere in the catalytic glycerol transformation over iridium-based catalysts , 2011 .

[78]  Changhai Liang,et al.  Insights into the reaction pathways of glycerol hydrogenolysis over Cu–Cr catalysts , 2012 .

[79]  Catherine Pinel,et al.  Heterogeneous Transformation of Glycerol to Lactic Acid , 2012, Topics in Catalysis.

[80]  T. Sooknoi,et al.  Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system , 2012 .

[81]  K. Tomishige,et al.  Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2 , 2012 .

[82]  Satoshi Sato,et al.  Vapor-phase Dehydration of Glycerol into Hydroxyacetone over Silver Catalyst , 2012 .

[83]  K. Jitsukawa,et al.  Selective Hydrogenolysis of Glycerol to 1,3-Propanediol Catalyzed by Pt Nanoparticles–AlOx/WO3 , 2012 .

[84]  M. Yarmo,et al.  Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media , 2012 .

[85]  R. Palkovits,et al.  Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. , 2012, Angewandte Chemie.

[86]  G. Yadav,et al.  Hydrogenolysis of Glycerol to 1,2-Propanediol over Nano-Fibrous Ag-OMS-2 Catalysts , 2012 .

[87]  Yulei Zhu,et al.  One-step hydrogenolysis of glycerol to biopropanols over Pt–H4SiW12O40/ZrO2 catalysts , 2012 .

[88]  M. Zhang,et al.  Solvent isotope effect and mechanism for the production of hydrogen and lactic acid from glycerol under hydrothermal alkaline conditions , 2012 .

[89]  G. Santori,et al.  Aqueous phase hydrogenolysis of glycerol to bio-propylene glycol over Pt-Sn catalysts. , 2012, Bioresource technology.

[90]  J. Bozell,et al.  A comparative review of petroleum-based and bio-based acrolein production. , 2012, ChemSusChem.

[91]  P. Arias,et al.  Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts , 2012 .

[92]  F. Toste,et al.  Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols. , 2012, Angewandte Chemie.

[93]  P. Arias,et al.  Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol , 2012 .

[94]  M. Abu‐Omar,et al.  Rhenium-catalyzed transfer hydrogenation and deoxygenation of biomass-derived polyols to small and useful organics. , 2012, ChemSusChem.

[95]  Xinwen Guo,et al.  Ag/Al2O3 for glycerol hydrogenolysis to 1,2-propanediol: activity, selectivity and deactivation , 2012 .

[96]  M. D. Soriano,et al.  Glycerol oxidehydration into acrolein and acrylic acid over W-V-Nb-O bronzes with hexagonal structure , 2012 .

[97]  Andreas Martin,et al.  Recent developments in dehydration of glycerol toward acrolein over heteropolyacids , 2012 .

[98]  Stephanie G. Wettstein,et al.  Bimetallic catalysts for upgrading of biomass to fuels and chemicals. , 2012, Chemical Society reviews.

[99]  Tianpin Wu,et al.  Selective hydrogenation of acrolein on supported silver catalysts: A kinetics study of particle size effects , 2013 .

[100]  Yulei Zhu,et al.  Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids , 2013 .

[101]  Minghui Zhang,et al.  Cu/boehmite: A highly active catalyst for hydrogenolysis of glycerol to 1,2-propanediol , 2013 .

[102]  S. Pengpanich,et al.  Preparation of supported POM catalysts for liquid phase oxydehydration of glycerol to acrylic acid , 2013 .

[103]  R. V. Chaudhari,et al.  Multiphase Catalytic Hydrogenolysis/Hydrodeoxygenation Processes for Chemicals from Renewable Feedstocks: Kinetics, Mechanism, and Reaction Engineering , 2013 .

[104]  T. Tago,et al.  Conversion of Biodiesel-Derived Crude Glycerol into Useful Chemicals over a Zirconia–Iron Oxide Catalyst , 2013 .

[105]  Z. Hou,et al.  Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu–Mg–Al catalysts , 2013 .

[106]  Tingzhen Li,et al.  Effect of zinc incorporation manner on a Cu–ZnO/Al2O3 glycerol hydrogenation catalyst , 2013, Reaction Kinetics, Mechanisms and Catalysis.

[107]  Yulei Zhu,et al.  Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol , 2013 .

[108]  Bo Yu,et al.  Selective oxidation of glycerol to lactic acid under acidic conditions using AuPd/TiO2 catalyst , 2013 .

[109]  P. Arias,et al.  Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – A critical review , 2013 .

[110]  Christian J. R. Coronado,et al.  Glycerol: Production, consumption, prices, characterization and new trends in combustion , 2013 .

[111]  P. Arias,et al.  Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source , 2013, Topics in Catalysis.

[112]  M. Shirai,et al.  Active sites in modified copper catalysts for selective liquid phase dehydration of aqueous glycerol to acetol , 2013 .

[113]  K. Jitsukawa,et al.  Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. , 2013, ChemSusChem.

[114]  F. Kapteijn,et al.  Pt/Al2O3 Catalyzed 1,3‐Propanediol Formation from Glycerol using Tungsten Additives , 2013 .

[115]  Fredric Bauer,et al.  Is there a future in glycerol as a feedstock in the production of biofuels and biochemicals? , 2013 .

[116]  Yulei Zhu,et al.  Alkaline metals modified Pt–H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol , 2013 .

[117]  S. Paul,et al.  Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein , 2013 .

[118]  J. Fierro,et al.  Stability and regeneration of Cu–ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol , 2013 .

[119]  Y. Hwang,et al.  Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid , 2013 .

[120]  Chun Hui Zhou,et al.  Recent Advances in Catalytic Conversion of Glycerol , 2013 .

[121]  Jiping Ma,et al.  Advances in selective catalytic transformation of ployols to value-added chemicals , 2013 .

[122]  Tao Zhang,et al.  Mesoporous Ti–W oxide: synthesis, characterization, and performance in selective hydrogenolysis of glycerol , 2013 .

[123]  I. Melián-Cabrera,et al.  An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support , 2014 .

[124]  Kangnian Fan,et al.  Propylene from renewable resources: catalytic conversion of glycerol into propylene. , 2014, ChemSusChem.

[125]  Satoshi Sato,et al.  Production of propanal from 1,2-propanediol over silica-supported WO3 catalyst , 2014 .

[126]  Samudrala Shanthi Priya,et al.  Vapour-Phase Hydrogenolysis of Glycerol to 1,3-Propanediol Over Supported Pt Catalysts: The Effect of Supports on the Catalytic Functionalities , 2014, Catalysis Letters.

[127]  C. Liu,et al.  Hydrogenolysis of Glycerol by the Combined Use of Zeolite and Ni/Al2O3 as Catalysts: A Route for Achieving High Selectivity to 1-Propanol , 2014 .

[128]  M. D. Soriano,et al.  One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance , 2014 .

[129]  Shoujie Ren,et al.  Glycerol conversion to lactic acid with sodium hydroxide as a homogeneous catalyst in a fed-batch reactor , 2015, Reaction Kinetics, Mechanisms and Catalysis.

[130]  R. Augustine,et al.  An Efficient, Selective Process for the Conversion of Glycerol to Propylene Glycol Using Fixed Bed Raney Copper Catalysts , 2014 .

[131]  Samudrala Shanthi Priya,et al.  Catalytic performance of Pt/AlPO4 catalysts for selective hydrogenolysis of glycerol to 1,3- propanediol in the vapour phase , 2014 .

[132]  T. Shimanouchi,et al.  Rapid conversion of glycerol to lactic acid under alkaline hydrothermal conditions, by using a continuous flow reaction system , 2014 .

[133]  Dehua He,et al.  Glycerol hydrogenolysis to propanediols over supported Pd–Re catalysts , 2014 .

[134]  A. Lemonidou,et al.  Synthesis and performance of highly dispersed Cu/SiO2 catalysts for the hydrogenolysis of glycerol , 2014 .

[135]  T. Tago,et al.  Conversion of Glycerol into Useful Chemicals over Iron Oxide-based Catalyst , 2014 .

[136]  J. Bitter,et al.  Transformations of polyols to organic acids and hydrogen in aqueous alkaline media , 2014 .

[137]  Yong Jin,et al.  Highly Efficient Production of Acrylic Acid by Sequential Dehydration and Oxidation of Glycerol , 2014 .

[138]  K. Tomishige,et al.  Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol , 2014 .

[139]  K. Tomishige,et al.  Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol , 2014 .

[140]  K. Tomishige,et al.  Selective hydrogenolysis of C-O bonds using the interaction of the catalyst surface and OH groups. , 2014, Topics in current chemistry.

[141]  J. Dubois,et al.  Examination of acid–base properties of solid catalysts for gas phase dehydration of glycerol: FTIR and adsorption microcalorimetry studies , 2014 .

[142]  T. Tago,et al.  Conversion of glycerol into allyl alcohol over potassium-supported zirconia-iron oxide catalyst , 2014 .

[143]  Yulei Zhu,et al.  SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol , 2014 .

[144]  Wei Xiong,et al.  Basic oxide-supported Ru catalysts for liquid phase glycerol hydrogenolysis in an additive-free system , 2014 .

[145]  Amin Talebian-Kiakalaieh,et al.  Glycerol for renewable acrolein production by catalytic dehydration , 2014 .

[146]  Catherine Pinel,et al.  Conversion of biomass into chemicals over metal catalysts. , 2014, Chemical reviews.

[147]  Satoshi Sato,et al.  Effect of Ag loading on Cu/Al2O3 catalyst in the production of 1,2-propanediol from glycerol , 2014 .

[148]  Satoshi Sato,et al.  Catalytic Dehydration of 1,2-Propanediol into Propanal over Ag-Modified Silica–Alumina , 2014 .

[149]  Kaori Omata,et al.  Direct Oxidative Transformation of Glycerol into Acrylic Acid over Phosphoric Acid-added W–V–Nb Complex Metal Oxide Catalysts , 2014 .

[150]  Robert J. Davis,et al.  Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru–Cu nanoparticles supported on TiO2 , 2014 .

[151]  Jian Feng,et al.  Reaction Mechanisms for the Heterogeneous Hydrogenolysis of Biomass-Derived Glycerol to Propanediols , 2014 .

[152]  I. Melián-Cabrera,et al.  Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic Au–Pt Nanoparticles on Acidic Zeolites , 2014, Topics in Catalysis.

[153]  R. Bal,et al.  Cu nanoclusters supported on nanocrystalline SiO₂-MnO₂: a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid. , 2014, Chemical communications.

[154]  W. Fan,et al.  Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst , 2014 .

[155]  H. Friedrich,et al.  The selective continuous flow synthesis of lower alcohols from polyols – a mechanistic interpretation of the results , 2014 .

[156]  Jianguo Wang,et al.  A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol , 2015 .

[157]  Yulei Zhu,et al.  Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt–WOx/Al2O3 catalysts , 2015 .

[158]  S. Bagheri,et al.  Catalytic conversion of biodiesel derived raw glycerol to value added products , 2015 .

[159]  W. Yuan,et al.  Ir–Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1,3-propanediol , 2015 .

[160]  Samudrala Shanthi Priya,et al.  Vapour phase hydrogenolysis of glycerol to propanediols over Cu/SBA‐15 catalysts , 2015 .

[161]  M. Beller,et al.  Ruthenium-catalyzed hydrogen generation from glycerol and selective synthesis of lactic acid , 2015 .

[162]  K. Faungnawakij,et al.  Effect of alumina hydroxylation on glycerol hydrogenolysis to 1,2-propanediol over Cu/Al2O3: combined experiment and DFT investigation , 2015 .

[163]  Ashish Kumar,et al.  Vapor-phase hydrogenolysis of glycerol over nanostructured Ru/MCM-41 catalysts , 2015 .

[164]  A. Lemonidou,et al.  One-step propylene formation from bio-glycerol over molybdena-based catalysts , 2015 .

[165]  Satoshi Sato,et al.  Efficient production of propylene in the catalytic conversion of glycerol , 2015 .

[166]  Xinwen Guo,et al.  Catalytic hydrogenolysis of glycerol to propanediols: a review , 2015 .

[167]  F. Mauriello,et al.  Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol , 2015 .

[168]  A. Lemonidou,et al.  One-pot tandem processing of glycerol stream to 1,2-propanediol with methanol reforming as hydrogen donor reaction , 2015 .

[169]  M. D. Soriano,et al.  Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid. , 2015, ChemSusChem.

[170]  G. Hutchings,et al.  Glycerol oxidation using gold-containing catalysts. , 2015, Accounts of chemical research.

[171]  C. Santilli,et al.  One-step glycerol oxidehydration to acrylic acid on multifunctional zeolite catalysts , 2015 .

[172]  W. Daud,et al.  A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method , 2015 .

[173]  J. Requies,et al.  New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol , 2015 .

[174]  Yulei Zhu,et al.  Tailored mesoporous copper/ceria catalysts for the selective hydrogenolysis of biomass-derived glycerol and sugar alcohols , 2016 .