Temporal Processing and Adaptation in the Songbird Auditory Forebrain

[1]  Thane Fremouw,et al.  Sound representation methods for spectro-temporal receptive field estimation , 2006, Journal of Computational Neuroscience.

[2]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[3]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[4]  Peter G. Gillespie,et al.  Hair-Cell Mechanotransduction and Cochlear Amplification , 2005, Neuron.

[5]  Ayla Ergün,et al.  Delayed inhibition in cortical receptive fields and the discrimination of complex stimuli. , 2005, Journal of neurophysiology.

[6]  Anne Hsu,et al.  Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds , 2005, Nature Neuroscience.

[7]  Powen Ru,et al.  Multiresolution spectrotemporal analysis of complex sounds. , 2005, The Journal of the Acoustical Society of America.

[8]  Edward L. Bartlett,et al.  Long-lasting modulation by stimulus context in primate auditory cortex. , 2005, Journal of neurophysiology.

[9]  Xiaoqin Wang,et al.  Sustained firing in auditory cortex evoked by preferred stimuli , 2005, Nature.

[10]  H. Sompolinsky,et al.  Adaptation without parameter change: Dynamic gain control in motion detection , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  I. Nelken,et al.  Multiple Time Scales of Adaptation in Auditory Cortex Neurons , 2004, The Journal of Neuroscience.

[12]  J. Fritz,et al.  Dynamics of Precise Spike Timing in Primary Auditory Cortex , 2004, The Journal of Neuroscience.

[13]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[14]  G. Langner,et al.  Functional organization of some auditory nuclei in the Guinea Fowl demonstrated by the 2-Deoxyglucose technique , 2004, Cell and Tissue Research.

[15]  D. P. Phillips,et al.  Level-dependent representation of stimulus frequency in cat primary auditory cortex , 2004, Experimental Brain Research.

[16]  D. P. Phillips,et al.  Responses of single neurons in cat auditory cortex to time-varying stimuli: linear amplitude modulations , 2004, Experimental Brain Research.

[17]  H. Scheich,et al.  Quantitative analysis and two-dimensional reconstruction of the tonotopic organization of the auditory field L in the chick from 2-deoxyglucose data , 2004, Experimental Brain Research.

[18]  C. Müller,et al.  Feature extraction and tonotopic organization in the avian auditory forebrain , 2004, Experimental Brain Research.

[19]  Lee M. Miller,et al.  Naturalistic Auditory Contrast Improves Spectrotemporal Coding in the Cat Inferior Colliculus , 2003, The Journal of Neuroscience.

[20]  N. C. Singh,et al.  Modulation spectra of natural sounds and ethological theories of auditory processing. , 2003, The Journal of the Acoustical Society of America.

[21]  D. Margoliash,et al.  Neuronal populations and single cells representing learned auditory objects , 2003, Nature.

[22]  Xiaoqin Wang,et al.  Auditory Cortical Responses Elicited in Awake Primates by Random Spectrum Stimuli , 2003, The Journal of Neuroscience.

[23]  L. Abbott,et al.  Model of song selectivity and sequence generation in area HVc of the songbird. , 2003, Journal of neurophysiology.

[24]  R. Dooling,et al.  Detection and discrimination of natural calls in masking noise by birds: estimating the active space of a signal , 2003, Animal Behaviour.

[25]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[26]  N. C. Singh,et al.  Selectivity for conspecific song in the zebra finch auditory forebrain. , 2003, Journal of neurophysiology.

[27]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[28]  C. Schreiner,et al.  Nonlinear Spectrotemporal Sound Analysis by Neurons in the Auditory Midbrain , 2002, The Journal of Neuroscience.

[29]  Xiaoqin Wang,et al.  Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. , 2002, Journal of neurophysiology.

[30]  Lee M. Miller,et al.  Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. , 2002, Journal of neurophysiology.

[31]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[32]  K. Sen,et al.  Feature analysis of natural sounds in the songbird auditory forebrain. , 2001, Journal of neurophysiology.

[33]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[34]  S A Shamma,et al.  Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. , 2001, Journal of neurophysiology.

[35]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[36]  E D Young,et al.  Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Martine Hausberger,et al.  Neuronal bases of categorization in starling song , 2000, Behavioural Brain Research.

[38]  M. Semple,et al.  Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. , 2000, Journal of neurophysiology.

[39]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[40]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[41]  A. Doupe,et al.  Singing-Related Neural Activity in a Dorsal Forebrain–Basal Ganglia Circuit of Adult Zebra Finches , 1999, The Journal of Neuroscience.

[42]  M. Gahr,et al.  Functional organisation of the field-L-complex of adult male zebra finches. , 1999, Neuroreport.

[43]  A. Doupe,et al.  Temporal and Spectral Sensitivity of Complex Auditory Neurons in the Nucleus HVc of Male Zebra Finches , 1998, The Journal of Neuroscience.

[44]  C. Schreiner,et al.  Spectral envelope coding in cat primary auditory cortex: linear and non‐linear effects of stimulus characteristics , 1998, The European journal of neuroscience.

[45]  Hagai Attias,et al.  Coding of Naturalistic Stimuli by Auditory Midbrain Neurons , 1997, NIPS.

[46]  E D Young,et al.  Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. II. Predicting responses with the use of nonlinear models. , 1997, Journal of neurophysiology.

[47]  M S Lewicki,et al.  Hierarchical Organization of Auditory Temporal Context Sensitivity , 1996, Journal of Neuroscience.

[48]  S. Shamma,et al.  Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. , 1996, Journal of neurophysiology.

[49]  S. Shamma,et al.  Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. , 1996, Journal of neurophysiology.

[50]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[51]  D. Margoliash,et al.  Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata) , 1995, The Journal of comparative neurology.

[52]  M S Lewicki,et al.  Mechanisms underlying the sensitivity of songbird forebrain neurons to temporal order. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  I. Nelken,et al.  Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. , 1994, Journal of neurophysiology.

[54]  E D Young,et al.  Comparative analysis of spectro-temporal receptive fields, reverse correlation functions, and frequency tuning curves of auditory-nerve fibers. , 1994, The Journal of the Acoustical Society of America.

[55]  H. Karten,et al.  Connections of the auditory forebrain in the pigeon (columba livia) , 1993, The Journal of comparative neurology.

[56]  J. Eggermont Wiener and Volterra analyses applied to the auditory system , 1993, Hearing Research.

[57]  D. Margoliash,et al.  Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (taenopygia guttata) , 1992, The Journal of comparative neurology.

[58]  D. Margoliash,et al.  Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  Robert D Frisina,et al.  Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement , 1990, Hearing Research.

[60]  Robert D Frisina,et al.  Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms , 1990, Hearing Research.

[61]  Adrian Rees,et al.  Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds , 1987, Hearing Research.

[62]  G. Langner,et al.  Topographic representation of periodicities in the forebrain of the mynah bird: one map for pitch and rhythm? , 1987, Brain Research.

[63]  Jos J. Eggermont,et al.  Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound , 1986, Hearing Research.

[64]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[65]  A M Aertsen,et al.  Reverse-correlation methods in auditory research , 1983, Quarterly Reviews of Biophysics.

[66]  D. Margoliash Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Eric D. Young,et al.  Response properties of type II and type III units in dorsal cochlear nucleus , 1982, Hearing Research.

[68]  M. Sachs,et al.  Effects of nonlinearities on speech encoding in the auditory nerve. , 1979, The Journal of the Acoustical Society of America.

[69]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.