Cellulosic Graphene Biocomposites for Versatile High‐Performance Flexible Electronic Applications

[1]  J. Straley,et al.  Distribution-induced non-universality of the percolation conductivity exponents , 1979 .

[2]  Xueming Zhang,et al.  Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidaxolium Chloride (AmimCl) , 2013, Materials.

[3]  S. Subhechha,et al.  Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites , 2012 .

[4]  B. Riedl,et al.  Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids , 2000 .

[5]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[6]  Ilker S. Bayer,et al.  Metal-like conductivity exhibited by triboelectrically deposited polyaniline (emeraldine base) particles on microtextured SiC surfaces , 2012 .

[7]  M. Skrifvars,et al.  All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals , 2014, Cellulose.

[8]  Charles Michael Buchanan,et al.  Aerobic biodegradation of cellulose acetate , 1993 .

[9]  P. Supaphol,et al.  Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[10]  R. Newnham,et al.  The volume fraction and temperature dependence of the resistivity in carbon black and graphite polymer composites: An effective media—percolation approach , 1992 .

[11]  J. Coleman,et al.  Percolation scaling in composites of exfoliated MoS2 filled with nanotubes and graphene. , 2012, Nanoscale.

[12]  Lei Liu,et al.  Integrated 585-GHz Hot-Electron Mixer Focal-Plane Arrays Based on Annular Slot Antennas for Imaging Applications , 2010, IEEE Transactions on Microwave Theory and Techniques.

[13]  J. W. Essam,et al.  Percolation theory , 1980 .

[14]  Dusan A. Pejakovic,et al.  Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst , 2004 .

[15]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[16]  L. Mattoso,et al.  Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. , 2009, Journal of nanoscience and nanotechnology.

[17]  Tse Nga Ng,et al.  Materials and Novel Patterning Methods for Flexible Electronics , 2009 .

[18]  S. Lee,et al.  Surface interpenetration between conducting polymer and PET substrate for mechanically reinforced ITO-free flexible organic solar cells , 2013 .

[19]  S. Pang,et al.  A critical review of all-cellulose composites , 2012, Journal of Materials Science.

[20]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[21]  A. Richardson A standard technique for clinical electrodiagnosis. , 1952, Annals of physical medicine.

[22]  J Gilbert,et al.  Migration from plasticized films into foods. 3. Migration of phthalate, sebacate, citrate and phosphate esters from films used for retail food packaging. , 1988, Food additives and contaminants.

[23]  Tao Chen,et al.  An electrically conducting polymer/graphene composite with a very low percolation threshold , 2010 .

[24]  Wei Shen,et al.  Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors , 2010 .

[25]  Li Yang,et al.  Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications , 2009, IEEE Antennas and Propagation Magazine.

[26]  M. Misra,et al.  Development of Renewable Resource-Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics , 2003 .

[27]  R. Kearney,et al.  Opportunities and Challenges for Starch in the Paper Industry , 1998 .

[28]  R. Mülhaupt,et al.  Thermoplastic cellulose acetate and cellulose acetate compounds prepared by reactive processing , 1997 .

[29]  Ilker S. Bayer,et al.  Durable and flexible graphene composites based on artists’ paint for conductive paper applications , 2015 .

[30]  R. Bai,et al.  Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance , 2005 .

[31]  Xiuyuan Ni,et al.  Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)–TiO2 heterojunction solar cell , 2013, Journal of Nanoparticle Research.

[32]  Paul Gatenholm,et al.  In vivo biocompatibility of bacterial cellulose. , 2006, Journal of biomedical materials research. Part A.

[33]  A. Athanassiou,et al.  All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules. , 2016, International journal of pharmaceutics.

[34]  Mamun Bin Ibne Reaz,et al.  Surface Electromyography Signal Processing and Classification Techniques , 2013, Sensors.

[35]  Zhong-Zhen Yu,et al.  Tough graphene-polymer microcellular foams for electromagnetic interference shielding. , 2011, ACS applied materials & interfaces.

[36]  R. Shanks,et al.  Characterization of kenaf fiber composites prepared with tributyl citrate plasticized cellulose acetate , 2015 .

[37]  Heaney Measurement and interpretation of nonuniversal critical exponents in disordered conductor-insulator composites. , 1995, Physical review. B, Condensed matter.

[38]  H. Khalil,et al.  Green composites from sustainable cellulose nanofibrils: A review , 2012 .

[39]  G. Freddi,et al.  Bio-based conductive composites: Preparation and properties of polypyrrole (PPy)-coated silk fabrics , 2009 .

[40]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[41]  Chin-San Wu Characterization of cellulose acetate-reinforced aliphatic–aromatic copolyester composites , 2012 .

[42]  A. Boon,et al.  Hematoma risk after needle electromyography , 2012, Muscle & nerve.

[43]  K.-P. Hoffmann,et al.  Flexible dry surface-electrodes for ECG long-term monitoring , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[44]  Min Yi,et al.  A review on mechanical exfoliation for the scalable production of graphene , 2015 .

[45]  H. Pang,et al.  Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite , 2012 .

[46]  D F Stegeman,et al.  A thin, flexible multielectrode grid for high-density surface EMG. , 2004, Journal of applied physiology.

[47]  R. Oostenveld,et al.  Optimal placement of bipolar surface EMG electrodes in the face based on single motor unit analysis. , 2010, Psychophysiology.

[48]  Mool C. Gupta,et al.  Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. , 2005, Nano letters.

[49]  Silvestro Micera,et al.  Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal. , 2017, Critical reviews in biomedical engineering.

[50]  A. Celzard,et al.  Non-universal conductivity critical exponents in anisotropic percolating media: a new interpretation , 2003 .

[51]  Richard M. Davis,et al.  Continuous cellulose fiber-reinforced cellulose ester composites. I. Manufacturing options , 2001 .

[52]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[53]  Yihe Zhang,et al.  Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites , 2004 .

[54]  W. Hamad,et al.  Cellulose reinforced polymer composites and nanocomposites: a critical review , 2013, Cellulose.

[55]  Shaobing Zhou,et al.  Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. , 2010, ACS applied materials & interfaces.

[56]  R. Cameron,et al.  Structure–property relationships in thermally aged cellulose fibers and paper , 1999 .

[57]  C. Doumanidis,et al.  Biodegradable cellulose acetate nanofiber fabrication via electrospinning. , 2010, Journal of nanoscience and nanotechnology.

[58]  Mihai Irimia-Vladu,et al.  Green and biodegradable electronics , 2012 .

[59]  S. Bose,et al.  Recent advances in graphene based polymer composites , 2010 .

[60]  Liangbing Hu,et al.  Highly transparent and writable wood all-cellulose hybrid nanostructured paper , 2013 .

[61]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[62]  Wolfgang Bauhofer,et al.  A review and analysis of electrical percolation in carbon nanotube polymer composites , 2009 .

[63]  Balberg,et al.  Tunneling and nonuniversal conductivity in composite materials. , 1987, Physical review letters.

[64]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[65]  C. Megaridis,et al.  Terahertz shielding of carbon nanomaterials and their composites – A review and applications , 2014 .

[66]  L. Flandin,et al.  Effect of filler auto-assembly on percolation transition in carbon nanotube/polymer composites , 2013 .

[67]  Thomas Borrmann,et al.  Conducting Polymers on Paper Fibres , 2005 .

[68]  Hui-Ming Cheng,et al.  Lightweight and Flexible Graphene Foam Composites for High‐Performance Electromagnetic Interference Shielding , 2013, Advanced materials.

[69]  Chaohe Xu,et al.  Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. , 2011, Chemical communications.

[70]  Xueming Zhang,et al.  Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) , 2013, Cellulose.

[71]  Ching-Ping Wong,et al.  Large-scale production of two-dimensional nanosheets , 2012 .

[72]  E. Fortunato,et al.  Thin and flexible bio-batteries made of electrospun cellulose-based membranes. , 2011, Biosensors & bioelectronics.

[73]  P. Diwan,et al.  Permeability studies of cellulose acetate free films for transdermal use: influence of plasticizers. , 1997, Pharmaceutica acta Helvetiae.

[74]  V. Choudhary,et al.  Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites , 2013, Journal of Nanoparticle Research.

[75]  You-Lo Hsieh,et al.  Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate , 2002 .

[76]  Yan Wang,et al.  Electromagnetic interference shielding of graphene/epoxy composites , 2009 .

[77]  E. Fortunato,et al.  Electronics with and on paper , 2011 .

[78]  D. Farina,et al.  Analysis of motor units with high-density surface electromyography. , 2008, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology.

[79]  M. Gemmi,et al.  Graphene-based large area dye-sensitized solar cell modules. , 2016, Nanoscale.

[80]  Jiri Silny,et al.  Diagnostic yield of noninvasive high spatial resolution electromyography in neuromuscular diseases , 1997, Muscle & nerve.

[81]  M. Jonoobi,et al.  Thermoplastic polymer impregnation of cellulose nanofibre networks: Morphology, mechanical and optical properties , 2014 .

[82]  Zhen Huang,et al.  Properties and paper sizing application of waterborne polyurethane emulsions synthesized with TDI and IPDI , 2013 .

[83]  D. Farina,et al.  Accessing the Neural Drive to Muscle and Translation to Neurorehabilitation Technologies , 2012, IEEE Reviews in Biomedical Engineering.

[84]  D. Chung Electromagnetic interference shielding effectiveness of carbon materials , 2001 .

[85]  M. Ibrahim,et al.  Modified Egyptian talc as internal sizing agent for papermaking , 2009 .

[86]  Mihai Irimia-Vladu,et al.  "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. , 2014, Chemical Society reviews.

[87]  Ilker S. Bayer,et al.  Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment , 2013, Cellulose.

[88]  Marino Lavorgna,et al.  Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing , 2012 .

[89]  Miriam Truffa Giachet,et al.  Assessing the physical stability of archival cellulose acetate films by monitoring plasticizer loss , 2014 .

[90]  J. R. Johnson,et al.  Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal , 2013 .

[91]  Jian-Hwa Guo Effects of Plasticizers on Water Permeation and Mechanical Properties of Cellulose Acetate: Antiplasticization in Slightly Plasticized Polymer Film , 1993 .

[92]  Feng,et al.  Differences between lattice and continuum percolation transport exponents. , 1985, Physical review letters.

[93]  S.R.J. Brueck,et al.  Narrow THz Spectral Signatures Through an RNA Solution in Nanofluidic Channels , 2010, IEEE Sensors Journal.

[94]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[95]  G. L. Soderberg,et al.  Electromyography in biomechanics. , 1984, Physical therapy.

[96]  Roberto Cingolani,et al.  Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplatelet‐Bio‐Based Composites , 2015 .

[97]  Alain Dufresne,et al.  Nanocellulose in biomedicine: Current status and future prospect , 2014 .

[98]  Z. Samad,et al.  Weldability of titanium and nickel with alloy filler addition and different electrodes tip shapes by using micro spot brazing method , 2014 .