𝐾-theory of line bundles and smooth varieties

<p>We give a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theoretic criterion for a quasi-projective variety to be smooth. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper L"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">L</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {L}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a line bundle corresponding to an ample invertible sheaf on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it suffices that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K Subscript q Baseline left-parenthesis upper X right-parenthesis approximately-equals upper K Subscript q Baseline left-parenthesis double-struck upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">L</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">K_q(X)\cong K_q(\mathbb {L})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q less-than-or-equal-to dimension left-parenthesis upper X right-parenthesis plus 1"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>dim</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">q\le \dim (X)+1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>

[1]  R. Michler Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces , 2019 .

[2]  A. Bergmann Introduction To Homological Algebra , 2016 .

[3]  J. Jardine Local Homotopy Theory , 2015 .

[4]  Denis-Charles Cisinski Descente par éclatements en K-théorie invariante par homotopie , 2010, 1003.1487.

[5]  C. Weibel,et al.  A negative answer to a question of Bass , 2010, 1004.3829.

[6]  C. Weibel,et al.  K-theory of cones of smooth varieties , 2009, 0905.4642.

[7]  C. Weibel,et al.  Bass’ NK groups and cdh-fibrant Hochschild homology , 2008, 0802.1928.

[8]  C. Weibel,et al.  K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst , 2006, math/0605367.

[9]  C. Weibel,et al.  Cyclic homology, cdh-cohomology and negative K-theory , 2005, math/0502255.

[10]  C. Haesemeyer Descent Properties of Homotopy K-Theory , 2004 .

[11]  C. Weibel Cyclic homology for schemes , 1996 .

[12]  Sletsjoe,et al.  Base Change Transitivity and Künneth Formulas for the Quillen Decomposition of Hochschild Homology. , 1992 .

[13]  C. Weibel,et al.  Étale descent for hochschild and cyclic homology , 1991 .

[14]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[15]  C. Weibel Module structures on the K-theory of graded rings , 1987 .

[16]  C. Weibel,et al.  The cyclic homology and K-theory of curves. , 1986 .

[17]  R. Thomason Algebraic $K$-theory and etale cohomology , 1985 .

[18]  P. Bois,et al.  Complexe de de Rham filtré d'une variété singulière , 1981 .

[19]  C. Weibel,et al.  AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .

[20]  A. Grothendieck Éléments de géométrie algébrique : I. Le langage des schémas , 1960 .