Blow-up in parabolic problems under Robin boundary conditions

By means of a first-order differential inequality technique, sufficient conditions are determined which imply that blow-up of the solution does occur or does not occur for the semilinear heat equation under Robin boundary conditions. In addition, a lower bound on blow-up time is obtained when blow-up does occur.

[1]  Hermann Brunner,et al.  Blowup in diffusion equations: a survey , 1998 .

[2]  Lawrence E. Payne,et al.  Lower bounds for blow-up time in parabolic problems under Neumann conditions , 2006 .

[3]  Marie-Hélène Bossel Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .

[4]  H. Weinberger,et al.  Lower Bounds for Vibration Frequencies of Elastically Supported Membranes and Plates , 1957 .

[5]  P. W. Schaefer,et al.  Bounds for blow-up time for the heat equation under nonlinear boundary conditions , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  Gérard A. Philippin,et al.  Blow-up phenomena for some nonlinear parabolic problems , 2008 .

[7]  Brian Straughan,et al.  Explosive Instabilities in Mechanics , 1998 .

[8]  Victor A. Galaktionov,et al.  The problem of blow-up in nonlinear parabolic equations , 2002 .

[9]  A. P. Mikhailov,et al.  Blow-Up in Quasilinear Parabolic Equations , 1995 .

[10]  Howard A. Levine,et al.  Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded fourier coefficients , 1975 .

[11]  Lawrence E. Payne,et al.  Lower bounds for blow-up time in parabolic problems under Dirichlet conditions , 2007 .

[12]  Gérard A. Philippin,et al.  Bounds for blow-up time in nonlinear parabolic problems , 2008 .

[13]  Daniel Daners,et al.  A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .