Sequence Surveyor: Leveraging Overview for Scalable Genomic Alignment Visualization

In this paper, we introduce overview visualization tools for large-scale multiple genome alignment data. Genome alignment visualization and, more generally, sequence alignment visualization are an important tool for understanding genomic sequence data. As sequencing techniques improve and more data become available, greater demand is being placed on visualization tools to scale to the size of these new datasets. When viewing such large data, we necessarily cannot convey details, rather we specifically design overview tools to help elucidate large-scale patterns. Perceptual science, signal processing theory, and generality provide a framework for the design of such visualizations that can scale well beyond current approaches. We present Sequence Surveyor, a prototype that embodies these ideas for scalable multiple whole-genome alignment overview visualization. Sequence Surveyor visualizes sequences in parallel, displaying data using variable color, position, and aggregation encodings. We demonstrate how perceptual science can inform the design of visualization techniques that remain visually manageable at scale and how signal processing concepts can inform aggregation schemes that highlight global trends, outliers, and overall data distributions as the problem scales. These techniques allow us to visualize alignments with over 100 whole bacterial-sized genomes.

[1]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[2]  Cynthia A. Brewer,et al.  ColorBrewer in Print: A Catalog of Color Schemes for Maps , 2003 .

[3]  R. Arnheim The Perception of Maps , 1976 .

[4]  Jill P. Mesirov,et al.  Combo: a whole genome comparative browser , 2006, Bioinform..

[5]  Ben Shneiderman,et al.  Extreme visualization: squeezing a billion records into a million pixels , 2008, SIGMOD Conference.

[6]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[7]  Jens Stoye,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2009 .

[8]  Victoria Interrante,et al.  Weaving versus blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color , 2006, APGV.

[9]  Matthieu Muffato,et al.  Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes , 2010, Bioinform..

[10]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[11]  Tamara Munzner,et al.  MizBee: A Multiscale Synteny Browser , 2009, IEEE Transactions on Visualization and Computer Graphics.

[12]  Jarke J. van Wijk,et al.  Case study: visualization of annotated DNA sequences , 2004, VISSYM'04.

[13]  Lior Pachter,et al.  VISTA: computational tools for comparative genomics , 2004, Nucleic Acids Res..

[14]  Björn-Olav Dozo,et al.  Quantitative Analysis of Culture Using Millions of Digitized Books , 2010 .

[15]  Tamara Munzner,et al.  SequenceJuxtaposer: Fluid Navigation For Large-Scale Sequence Comparison in Context , 2004, German Conference on Bioinformatics.

[16]  Siv G. E. Andersson,et al.  genoPlotR: comparative gene and genome visualization in R , 2010, Bioinform..

[17]  Nicholas A. Hamilton,et al.  CMap3D: a 3D visualization tool for comparative genetic maps , 2010, Bioinform..

[18]  R. Rosenholtz,et al.  A summary-statistic representation in peripheral vision explains visual crowding. , 2009, Journal of vision.

[19]  A. Oliva,et al.  Searching in dynamic displays: effects of configural predictability and spatiotemporal continuity. , 2007, Journal of vision.

[20]  Jason Dykes,et al.  Configuring Hierarchical Layouts to Address Research Questions , 2009, IEEE Transactions on Visualization and Computer Graphics.

[21]  Mehmet M. Dalkilic,et al.  COMPAM : visualization of combining pairwise alignments for multiple genomes , 2006, Bioinform..

[22]  Martin Wattenberg,et al.  Beautiful History: Visualizing Wikipedia , 2010, Beautiful Visualization.

[23]  Paul Stothard,et al.  The CGView Server: a comparative genomics tool for circular genomes , 2008, Nucleic Acids Res..

[24]  R. Rosenholtz,et al.  A summary statistic representation in peripheral vision explains visual search. , 2009, Journal of vision.

[25]  S. Franconeri The Nature and Status of Visual Resources , 2013 .

[26]  Miriah D. Meyer,et al.  Genome-wide synteny through highly sensitive sequence alignment: Satsuma , 2010, Bioinform..

[27]  Ivica Letunic,et al.  Visualization of multiple alignments, phylogenies and gene family evolution , 2010, Nature Methods.

[28]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[29]  Jean-Daniel Fekete,et al.  Interactive information visualization of a million items , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[30]  B. Caffo,et al.  eAppendix 1 : Lasagna plots : A saucy alternative to spaghetti plots , 2010 .

[31]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[32]  Yuanzhen Li,et al.  Measuring visual clutter. , 2007, Journal of vision.

[33]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.