Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics

Thermoelectric materials that transform waste heat generated by equipment or buildings into electricity are emerging as an important green energy technology. Currently, researchers are trying to improve thermoelectric substances by embedding within them nanoscale precipitates that allow these materials to capture more heat. An international team led by Jiaqing He from the South University of Science and Technology of China has now discovered a way to improve this process by systematically introducing nanoscale crystal structure defects, or ‘nanograins’, into lead sulfide (PbS) particles. Their approach tripled the thermoelectric performance of this low-cost mineral from its bulk state without introducing charge-disrupting centers commonly associated with nanoscale precipitates. Detailed analysis revealed that the densely packed nanograins trap heat by scattering solid-state vibrations, or phonons, while simultaneously suppressing ‘bipolar’ interactions between charge carriers that can diminish thermoelectric power.

[1]  W. E. Taylor,et al.  Grain Boundary Barriers in Germanium , 1952 .

[2]  H. Kobayashi,et al.  The Effect of Pressure on the Lattice Parameters : Part I. PbS and PbTe : Part II. Gd, NiO, and α-MnS , 1968 .

[3]  J. Seto The electrical properties of polycrystalline silicon films , 1975 .

[4]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[5]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[6]  Jean-Pierre Fleurial,et al.  Properties of single crystalline semiconducting CoSb3 , 1996 .

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[9]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[10]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[11]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[12]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[13]  D. Rowe Thermoelectrics Handbook , 2005 .

[14]  H. Zeng,et al.  Technique for Preparing Ultrafine Nanocrystalline Bulk Material of Pure Rare‐Earth Metals , 2006 .

[15]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[16]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[17]  M. Dresselhaus,et al.  Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. , 2009, Physical review letters.

[18]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[19]  A. Popescu,et al.  Model of transport properties of thermoelectric nanocomposite materials , 2009 .

[20]  George S. Nolas,et al.  Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites , 2009 .

[21]  M. Dresselhaus,et al.  Modeling study of thermoelectric SiGe nanocomposites , 2009 .

[22]  M. Dresselhaus,et al.  Structure study of bulk nanograined thermoelectric bismuth antimony telluride. , 2009, Nano letters.

[23]  Richard G. Blair,et al.  Nanostructured Bulk Silicon as an Effective Thermoelectric Material , 2009 .

[24]  L. Wirtz,et al.  Near Kohn anomalies in the phonon dispersion relations of lead chalcogenides , 2009, 0909.4216.

[25]  M. Kanatzidis,et al.  Microstructure‐Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials , 2010 .

[26]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[27]  M. Kanatzidis,et al.  Dimensional Reduction: A Design Tool for New Radiation Detection Materials , 2011, Advanced materials.

[28]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[29]  C. Klinke,et al.  Thermoelectric properties of lead chalcogenide core-shell nanostructures. , 2011, ACS nano.

[30]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[31]  M. Kanatzidis,et al.  High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. , 2011, Journal of the American Chemical Society.

[32]  G. J. Snyder,et al.  Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. , 2011, ACS nano.

[33]  Yue Wu,et al.  Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures , 2012 .

[34]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[35]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[36]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[37]  Antonio M. López,et al.  Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag2Te–PbTe , 2012, Journal of Nanoparticle Research.

[38]  G. J. Snyder,et al.  Nanostructuring of thermoelectric Mg(2) Si via a nonequilibrium intermediate state. , 2012, Small.

[39]  Cuikun Lin,et al.  Tilted face-centered-cubic supercrystals of PbS nanocubes. , 2012, Nano letters.

[40]  Álvaro Somoza,et al.  Synthesis and surface modification of uniform MFe2O4 (M = Fe, Mn, and Co) nanoparticles with tunable sizes and functionalities , 2012, Journal of Nanoparticle Research.

[41]  M. Takashiri,et al.  Combined effect of nanoscale grain size and porosity on lattice thermal conductivity of bismuth-telluride-based bulk alloys , 2012 .

[42]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[43]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[44]  M. Kanatzidis,et al.  Role of sodium doping in lead chalcogenide thermoelectrics. , 2013, Journal of the American Chemical Society.

[45]  J. Morante,et al.  Core-shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe-PbS thermoelectric properties. , 2013, ACS nano.