Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.

[1]  M. Pospieszalski,et al.  Extremely low-noise amplification with cryogenic FETs and HFETs: 1970-2004 , 2005, IEEE Microwave Magazine.

[2]  P. Kangaslahti,et al.  Advanced pseudo-correlation radiometers for the Planck-LFI instrument , 2003, astro-ph/0307116.

[3]  Rainer Weiss,et al.  COBE Differential Microwave Radiometers - Instrument design and implementation , 1990 .

[4]  M. Halpern,et al.  Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis , 2006 .

[5]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[6]  A. Mediavilla,et al.  LFI 30 and 44 GHz receivers Back-End Modules , 2009, 1001.4771.

[7]  Michael Seiffert,et al.  Offset balancing in pseudo-correlation radiometers for CMB measurements , 2003 .

[8]  J. R. Bond,et al.  Extended Mosaic Observations with the Cosmic Background Imager , 2004 .

[9]  M. Frailis,et al.  Noise properties of the Planck-LFI receivers , 2009, 1001.4608.

[10]  G. Morgante,et al.  Cryogenic characterization of the Planck sorption cooler system flight model , 2009, 1001.4628.

[11]  Davide Maino,et al.  Removing 1/f noise stripes in cosmic microwave background anisotropy observations , 2002 .

[12]  C. Sozzi,et al.  Planck-LFI flight model feed horns , 2009, 1001.4633.

[13]  F. Boulanger,et al.  Interstellar dust models for extinction and emission , 1990 .

[14]  Andy N. Taylor,et al.  The quasi-optical design of the QUaD telescope , 2004 .

[15]  M. Halpern,et al.  Design, Implementation, and Testing of the Microwave Anisotropy Probe Radiometers , 2003 .

[16]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[17]  James J. Bock,et al.  Z-Spec: a broadband millimeter-wave grating spectrometer: design, construction, and first cryogenic measurements , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  H. A. Haus,et al.  Representation of Noise in Linear Twoports , 1960, Proceedings of the IRE.

[19]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[20]  T. Phillips,et al.  Millimeter and Submillimeter Detectors for Astronomy , 2003 .

[21]  Michael Seiffert,et al.  1=f noise and other systematic effects in the Planck-LFI radiometers , 2002 .

[22]  C. G. T. Haslam,et al.  A 408 MHz all-sky continuum survey. II. The atlas of contour maps. , 1982 .

[23]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[24]  M. W. Pospieszalski,et al.  Very low noise and low power operation of cryogenic AlInAs/GaInAs/InP HFET's , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[25]  M. Lui,et al.  Design and performance of wideband, low-noise, millimeter-wave amplifiers for microwave anisotropy probe radiometers , 2000, 2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest of Papers (Cat. No.00CH37096).

[26]  M. Pospieszalski Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence , 1989 .

[27]  P. Kangaslahti,et al.  Design, development, and verification of the Planck Low Frequency Instrument 70 GHz Front-End and Back-End Modules , 2009 .

[28]  Reappraising foreground contamination in the COBE-DMR data , 2003, astro-ph/0302181.

[29]  M. Frailis,et al.  The linearity response of the Planck-LFI flight model receivers , 2009, 1001.4610.

[30]  G. Giardino,et al.  Planck pre-launch status: the Planck-LFI programme , 2010, 1001.2657.

[31]  Richard J. Davis,et al.  High-sensitivity measurements of the cosmic microwave background power spectrum with the extended Very Small Array , 2004, astro-ph/0402498.

[32]  C. Dickinson,et al.  Towards a free–free template for CMB foregrounds , 2003, astro-ph/0302024.

[33]  W. C. Jones,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[34]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits , 2006, astro-ph/0603452.

[35]  J. Aumont,et al.  Archeops in-flight performance, data processing, and map making , 2007 .

[36]  F. Pasian,et al.  Planck pre-launch status: Design and description of the Low Frequency Instrument , 2010, 1001.3321.

[37]  Jones,et al.  Cross-Correlation of Tenerife Data with Galactic Templates—Evidence for Spinning Dust? , 1999, The Astrophysical journal.