Automata theory based on unsharp quantum logic

By studying two unsharp quantum structures, namely extended lattice ordered effect algebras and lattice ordered QMV algebras, we obtain some characteristic theorems of MV algebras. We go on to discuss automata theory based on these two unsharp quantum structures. In particular, we prove that an extended lattice ordered effect algebra (or a lattice ordered QMV algebra) is an MV algebra if and only if a certain kind of distributive law holds for the sum operation. We introduce the notions of (quantum) finite automata based on these two unsharp quantum structures, and discuss closure properties of languages and the subset construction of automata. We show that the universal validity of some important properties (such as sum, concatenation and subset constructions) depend heavily on the above distributive law. These generalise results about automata theory based on sharp quantum logic.

[1]  Irving Kaplansky,et al.  Any Orthocomplemented Complete Modular Lattice is a Continuous Geometry , 1955 .

[2]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[3]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[4]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[5]  Brunella Gerla MANY VALUED LOGICS AND SEMIRINGS , 2003 .

[6]  Robert Šulka,et al.  Mathematica Slovaca , 2012 .

[7]  Daowen Qiu,et al.  Automata theory based on quantum logic: some characterizations , 2004, Inf. Comput..

[8]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[9]  Qiu Dao Automata and Grammars Theory Based on Quantum Logic , 2003 .

[10]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[11]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[12]  Brunella Gerla Automata over MV-Algebra. , 2004 .

[13]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[14]  Mingsheng Ying,et al.  Automata Theory Based on Quantum Logic. (I) , 2000 .

[15]  Automata over MV-algebras [many-valued logic] , 2004, Proceedings. 34th International Symposium on Multiple-Valued Logic.

[16]  Mingsheng Ying,et al.  Automata Theory Based on Quantum Logic II , 2000 .

[17]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[18]  Roberto Giuntini,et al.  Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics , 2010 .

[19]  Stanley Gudder Total extensions of effect algebras , 1995 .

[20]  Roberto Giuntini Quantum MV algebras , 1996, Stud Logica.

[21]  Daowen Qiu,et al.  Characterizations of quantum automata , 2004, Theor. Comput. Sci..

[22]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[23]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[24]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[25]  Mingsheng Ying,et al.  A theory of computation based on quantum logic (I) , 2004, 2005 IEEE International Conference on Granular Computing.

[26]  Robert W. Spekkens,et al.  Foundations of Quantum Mechanics , 2007 .

[27]  Kôdi Husimi Studies on the Foundation of Quantum Mechanics. I , 1937 .