Scattering matrices and expansion coefficients of martian analogue palagonite particles

We present measurements of ratios of elements of the scattering matrix of martian analogue palagonite particles for scattering angles ranging from 3° to 174° and a wavelength of 632.8 nm. To facilitate the use of these measurements in radiative transfer calculations we have devised a method that enables us to obtain, from these measurements, a normalized synthetic scattering matrix covering the complete scattering angle range from 0° to 180°. Our method is based on employing the coefficients of the expansions of scattering matrix elements into generalized spherical functions. The synthetic scattering matrix elements and/or the expansion coefficients obtained in this way, can be used to include multiple scattering by these irregularly shaped particles in (polarized) radiative transfer calculations, such as calculations of sunlight that is scattered in the dusty martian atmosphere.

[1]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[2]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[3]  Timo Nousiainen,et al.  Variational data-analysis method for combining laboratory-measured light-scattering phase functions and forward-scattering computations , 2007 .

[4]  Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems, and perspectives , 2003 .

[5]  Robert B. Singer,et al.  Spectroscopic observation of Mars , 1985 .

[6]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[7]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[8]  Daphne Stam,et al.  Errors in calculated planetary phase functions and albedos due to neglecting polarization , 2005 .

[9]  Th. Henning,et al.  Steps toward interstellar silicate mineralogy - VI. Dependence of crystalline olivine IR spectra on iron content and particle shape , 2001 .

[10]  M. Lopez-Valverde,et al.  Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions , 2006 .

[11]  J. Hovenier Measuring Scattering Matrices of Small Particles at Optical Wavelengths , 2000 .

[12]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[13]  M. Mishchenko,et al.  The Effect of the Shape of Dust Aerosol Particles in the Martian Atmosphere on the Particle Parameters , 2002 .

[14]  T. Nousiainen,et al.  Comparison of measured single-scattering matrix of feldspar particles with T-matrix simulations using spheroids , 2003 .

[15]  J. Hovenier,et al.  WWW scattering matrix database for small mineral particles at 441.6 and 632.8nm , 2005 .

[16]  Jef Vandenberghe,et al.  Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction , 1997 .

[17]  G. R. Gladstone,et al.  A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos , 1995 .

[18]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[19]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[20]  Hubble Space Telescope imaging polarimetry of Mars during the 2003 opposition , 2005 .

[21]  Light reflected by an atmosphere containing irregular mineral dust aerosol , 2004 .

[22]  Karri Muinonen,et al.  Scattering of light by large Saharan dust particles in a modified ray optics approximation , 2003 .

[23]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[24]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[25]  M. van der Mee,et al.  Transfer of Polarized Light in Planetary Atmospheres: Basic Concepts and Practical Methods , 2005 .

[26]  J. Hovenier,et al.  Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz–Mie results , 2003 .

[27]  J. Hovenier,et al.  UvA-DARE ( Digital Academic Repository ) Shape effects in scattering and absorption by randomly oriented particles small compared to the wavelength , 2003 .

[28]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[29]  J. Bell,et al.  Thermal emission measurements 2000–400 cm−1 (5–25 μm) of Hawaiian palagonitic soils and their implications for Mars , 1995 .

[30]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[31]  Maurice Herman,et al.  Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model , 2005 .

[32]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[33]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[34]  M. Gurwell,et al.  Mars surface and atmospheric temperature during the 2001 global dust storm , 2005 .

[35]  J. Hovenier,et al.  Experimental determination of scattering matrices of olivine and Allende meteorite particles , 2000 .

[36]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[37]  D. F. Johnston,et al.  Representations of the Rotation and Lorentz Groups and Their Applications , 1965 .

[38]  Larry D. Travis,et al.  T-matrix computations of light scattering by large spheroidal particles , 1994 .

[39]  A. Lacis,et al.  Modeling errors in diffuse‐sky radiation: Vector vs scalar treatment , 1998 .

[40]  E. Petrova,et al.  Polarimetry of Mars in High-Transparency Periods: How Reliable Are the Estimates of Aerosol Optical Properties? , 2003 .

[41]  V. Rosenbush,et al.  Polarization opposition effect for the Galilean satellites of Jupiter , 2005 .

[42]  A. Kokhanovsky Optical properties of irregularly shaped particles , 2003 .

[43]  Hester Volten,et al.  Scattering matrix of large Saharan dust particles: Experiments and computations , 2007 .

[44]  Cornelis V. M. van der Mee,et al.  Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere , 1983 .

[45]  P. Gierasch,et al.  The Effect of Dust on the Temperature of the Martian Atmosphere , 1972 .

[46]  Hester Volten,et al.  Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes , 2004 .

[47]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[48]  Joop W. Hovenier,et al.  Conditions for the elements of the scattering matrix , 1986 .

[49]  W. D. Rooij,et al.  Expansion of Mie scattering matrices in generalized spherical functions , 1984 .

[50]  Hester Volten,et al.  Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633 nm , 2001 .

[51]  Oleg Korablev,et al.  Open questions on optical properties of dust and the opacity of the Martian atmosphere , 2002 .

[52]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[53]  O. Muñoz,et al.  A Monte Carlo Code to Compute Energy Fluxes in Cometary Nuclei , 2002 .

[54]  J. Hovenier,et al.  An update of the Amsterdam Light Scattering Database , 2006 .

[55]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .