Simultaneous ply-order, ply-number and ply-drop optimization of laminate wind turbine blades using the inverse finite element method

Abstract This paper presents a novel methodology to simultaneously determine the optimal ply-order, ply-number and ply-drop configuration of laminate wind turbine blades using simulation-based optimization, considering the shape that the laminates are expected to attain after large elastic deformations. This methodology combines Genetic Algorithms with the Inverse Finite Element Method. As an actual engineering application, we redesigned the composite stacking layout of a medium-power 40-kW wind turbine blade to reduce its weight, subjected to mechanical and manufacturing constraints such as allowable tip deflection, maximum stress, natural frequencies, and maximum number of successive identical plies. Results demonstrate weight reductions of up to 15% compared to the initial layout, proving that the proposed methodology is a robust redesign tool capable of effectively determining the optimal composite stacking layout of laminate wind turbine blades.

[1]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[2]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[3]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[4]  Bruno A. Roccia,et al.  Non-linear aeroelasticity: An approach to compute the response of three-blade large-scale horizontal-axis wind turbines , 2014 .

[5]  Ming Zhou,et al.  Optimization of Blended Composite Wing Panels Using Smeared Stiffness Technique and Lamination Parameters , 2010 .

[6]  Lin Wang,et al.  Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm , 2016 .

[7]  E. Barbero Introduction to Composite Materials Design , 1998 .

[8]  Giovanni Belingardi,et al.  Investigation of Influence of Tab Types on Tensile Strength of E-Glass/Epoxy Fiber Reinforced Composite Materials , 2011 .

[9]  Cristian Guillermo Gebhardt,et al.  Application of the inverse finite element method to design wind turbine blades , 2017 .

[10]  Enedir Ghisi,et al.  Residential building design optimisation using sensitivity analysis and genetic algorithm , 2016 .

[11]  D. Dumas,et al.  From stacking sequences to ply layouts: An algorithm to design manufacturable composite structures , 2016 .

[12]  Ernesto Benini,et al.  Multi-objective structural optimization of a HAWT composite blade , 2013 .

[13]  V. Fachinotti,et al.  Inverse finite element modeling of shells using the degenerate solid approach , 2015 .

[14]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[15]  B. Vijaya Ramnath,et al.  Mechanical Behaviour of Glass and Carbon Fibre Reinforced Composites at Varying Strain Rates and Temperatures , 2014 .

[16]  Alejandro Eduardo Albanesi Inverse design methods for compliant mechanisms , 2011 .

[17]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[18]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[19]  Martín A. Pucheta,et al.  A new method to design compliant mechanisms based on the inverse beam finite element model , 2013 .

[20]  Damiano Pasini,et al.  Optimum stacking sequence design of composite materials Part II: Variable stiffness design , 2010 .

[21]  Ernesto Benini,et al.  Proposal for a coupled aerodynamic–structural wind turbine blade optimization , 2017 .

[22]  R. Le Riche,et al.  Evolutionary Optimization , 2012, Variants of Evolutionary Algorithms for Real-World Applications.

[23]  Damiano Pasini,et al.  Optimum stacking sequence design of composite materials Part I: Constant stiffness design , 2009 .

[24]  Søren Nielsen,et al.  A component mode synthesis algorithm for multibody dynamics of wind turbines , 2009 .

[25]  Michael S. Selig,et al.  New Airfoils for Small Horizontal Axis Wind Turbines , 1998 .

[26]  Kusum Deep,et al.  A real coded genetic algorithm for solving integer and mixed integer optimization problems , 2009, Appl. Math. Comput..

[27]  Sean B. Leen,et al.  Physical experimental static testing and structural design optimisation for a composite wind turbine blade , 2017 .

[28]  Chang-Sun Hong,et al.  Optimum design of composite structures with ply drop using genetic algorithm and expert system shell , 1999 .

[29]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[30]  Hai-Tao Fan,et al.  An optimization method for composite structures with ply-drops , 2016 .