A Thorough Formalization of Conceptual Spaces

The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by convex regions in this space. After pointing out a problem with the convexity requirement, we propose a formalization of conceptual spaces based on fuzzy star-shaped sets. Our formalization uses a parametric definition of concepts and extends the original framework by adding means to represent correlations between different domains in a geometric way. Moreover, we define computationally efficient operations on concepts (intersection, union, and projection onto a subspace) and show that these operations can support both learning and reasoning processes.

[1]  Ola Ahlqvist,et al.  A Parameterized Representation of Uncertain Conceptual Spaces , 2004, Trans. GIS.

[2]  R. Shepard Attention and the metric structure of the stimulus space. , 1964 .

[3]  Ignazio Infantino,et al.  Anchoring by Imitation Learning in Conceptual Spaces , 2005, AI*IA.

[4]  Steven Schockaert,et al.  Interpolation and Extrapolation in Conceptual Spaces: A Case Study in the Music Domain , 2011, RR.

[5]  Salvatore Gaglio,et al.  Conceptual Spaces for Computer Vision Representations , 2001, Artificial Intelligence Review.

[6]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[7]  José V. Hernández-Conde A case against convexity in conceptual spaces , 2016, Synthese.

[8]  D M Ennis,et al.  Toward a universal law of generalization. , 1988, Science.

[9]  George J. Klir,et al.  Concepts and Fuzzy Logic , 2011 .

[10]  M. Raubal Formalizing Conceptual Spaces , 2004 .

[11]  G. Murphy,et al.  The Big Book of Concepts , 2002 .

[12]  John T. Rickard,et al.  Knowledge Representation and Reasoning in Conceptual Spaces , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[13]  Jonathan Lawry,et al.  Hierarchical conceptual spaces for concept combination , 2016, Artif. Intell..

[14]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[15]  Salvatore Gaglio,et al.  Anchoring symbols to conceptual spaces: the case of dynamic scenarios , 2003, Robotics Auton. Syst..

[16]  Benjamin Adams,et al.  A Metric Conceptual Space Algebra , 2009, COSIT.

[17]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[18]  John Domingue,et al.  Exploiting conceptual spaces for ontology integration , 2008 .

[19]  Steven Schockaert,et al.  Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning , 2015, Artif. Intell..

[20]  L. A. Zadeh,et al.  A note on prototype theory and fuzzy sets , 1982, Cognition.

[21]  Benjamin Adams,et al.  Conceptual Space Markup Language (CSML): Towards the Cognitive Semantic Web , 2009, 2009 IEEE International Conference on Semantic Computing.

[22]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[23]  Edward E. Smith,et al.  Gradedness and conceptual combination , 1982, Cognition.

[24]  Janet Aisbett,et al.  A general formulation of conceptual spaces as a meso level representation , 2001, Artif. Intell..

[25]  Peter Gärdenfors,et al.  Event structure, conceptual spaces and the semantics of verbs , 2012 .

[26]  Peter Gärdenfors,et al.  Representing part–whole relations in conceptual spaces , 2013, Cognitive Processing.

[27]  Stevan Harnad The Symbol Grounding Problem , 1999, ArXiv.

[28]  C. Smith A Characterization of Star-Shaped Sets , 1968 .

[29]  James F. Knutson,et al.  Unsupervised Concept Learning and Value Systematicity: A Complex Whole Aids Learning the Parts , 1996 .

[30]  John T. Rickard,et al.  A concept geometry for conceptual spaces , 2006, Fuzzy Optim. Decis. Mak..

[31]  D. Medin,et al.  Context and structure in conceptual combination , 1988, Cognitive Psychology.

[32]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[33]  P. Gärdenfors The Geometry of Meaning: Semantics Based on Conceptual Spaces , 2014 .

[34]  Igor Douven,et al.  Vagueness: A Conceptual Spaces Approach , 2011, Journal of Philosophical Logic.

[35]  Hector J. Levesque,et al.  Knowledge Representation and Reasoning , 2004 .

[36]  F ATTNEAVE,et al.  Dimensions of similarity. , 1950, The American journal of psychology.