A 1D/2D helical CdS/ZnIn2 S4 nano-heterostructure.

Multidimensional nano-heterostructures (NHSs) that have unique dimensionality-dependent integrative and synergic effects are intriguing but still underdeveloped. Here, we report the first helical 1D/2D epitaxial NHS between CdS and ZnIn2S4. Experimental and theoretical studies reveal that the mismatches in lattice and dangling bonds between 1D and 2D units govern the growth procedure. The resulting well-defined interface induces the delocalized interface states, thus facilitate the charge transfer and enhance the performance in the photoelectrochemical cells. We foresee that the mechanistic insights gained and the electronic structures revealed would inspire the design of more complex 1D/2D NHSs with outstanding functionalities.

[1]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[2]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[3]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[4]  Yue Wu,et al.  Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. , 2012, Nano letters.

[5]  P. Ajayan,et al.  Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light , 2013, Advanced materials.

[6]  Chong Xiao,et al.  Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. , 2013, Journal of the American Chemical Society.

[7]  M. Chi,et al.  Epitaxial nanosheet-nanowire heterostructures. , 2013, Nano letters.

[8]  G. Eda,et al.  Graphene oxide as a chemically tunable platform for optical applications. , 2010, Nature chemistry.

[9]  Zhiqun Lin,et al.  High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. , 2012, Journal of the American Chemical Society.

[10]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[11]  Can Li,et al.  Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. , 2003, Chemical communications.

[12]  Lars Samuelson,et al.  Continuous gas-phase synthesis of nanowires with tunable properties , 2012, Nature.

[13]  S. Shinkai,et al.  Creation of Both Right-Handed and Left-Handed Silica Structures by Sol−Gel Transcription of Organogel Fibers Comprised of Chiral Diaminocyclohexane Derivatives , 2000 .

[14]  P. Král,et al.  Self-assembly of graphene nanostructures on nanotubes. , 2011, ACS nano.

[15]  Chongmin Wang,et al.  Helical Crystalline SiC/SiO2 Core−Shell Nanowires , 2002 .

[16]  Song Jin,et al.  Potential applications of hierarchical branching nanowires in solar energy conversion , 2009 .

[17]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[18]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[19]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[20]  Uri Banin,et al.  Kolloidale Hybridnanostrukturen: ein neuer Typ von Funktionsmaterialien , 2010 .

[21]  A. Ellis,et al.  Optical to electrical energy conversion. Characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells. [Conversion mechanisms and efficiencies] , 1976 .

[22]  Zhiyuan Zeng,et al.  One-step synthesis of Ni3S2 nanorod@Ni(OH)2nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors , 2013 .

[23]  K. Domen,et al.  Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. , 2013, Journal of the American Chemical Society.

[24]  Yoshio Bando,et al.  Carbon nanothermometer containing gallium , 2002, Nature.

[25]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[26]  Yi Cui,et al.  Formation of chiral branched nanowires by the Eshelby Twist. , 2008, Nature nanotechnology.

[27]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[28]  P. Kumta,et al.  Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4 , 1998 .

[29]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[30]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[31]  T. C. Mcgill,et al.  Lattice match: An application to heteroepitaxy , 1984 .

[32]  Tianyou Zhai,et al.  One‐Dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics , 2013, Advanced materials.

[33]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[34]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[35]  Samuel I Stupp,et al.  Semiconductor nanohelices templated by supramolecular ribbons. , 2002, Angewandte Chemie.

[36]  S. Aloni,et al.  Epitaxial growth of shape-controlled Bi2Te3-Te heterogeneous nanostructures. , 2010, Journal of the American Chemical Society.