Thermodynamics of multi-sublattice battery active materials: from an extended regular solution theory to a phase-field model of LiMn_yFe_1-yPO_4

[1]  M. Bazant,et al.  Efficient Computation of Safe, Fast Charging Protocols for Multiphase Lithium-Ion Batteries: A Lithium Iron Phosphate Case Study , 2023, SSRN Electronic Journal.

[2]  W. Chueh,et al.  Learning heterogeneous reaction kinetics from X-ray videos pixel by pixel , 2023, Nature.

[3]  F. Ruiz-Zepeda,et al.  Entering Voltage Hysteresis in Phase‐Separating Materials: Revealing the Electrochemical Signature of the Intraparticle Phase‐Separated State , 2023, Advanced materials.

[4]  V. Pol,et al.  Recent progress on key materials and technical approaches for electrochemical lithium extraction processes , 2023, Desalination.

[5]  A. Nwanya,et al.  Recent progress in Mn and Fe-rich cathode materials used in Li-ion batteries , 2022, Journal of Energy Storage.

[6]  Eric N. Guyes,et al.  Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion , 2022, Chemical reviews.

[7]  Daniel C W Tsang,et al.  Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects , 2022, Renewable and Sustainable Energy Reviews.

[8]  T. A. Hatton,et al.  Lithium recovery using electrochemical technologies: Advances and challenges. , 2022, Water research.

[9]  M. Bazant,et al.  Interfacial Resistive Switching by Multiphase Polarization in Ion-Intercalation Nanofilms. , 2022, Nano letters.

[10]  B. Nestler,et al.  Modeling intercalation in cathode materials with phase-field methods: Assumptions and implications using the example of LiFePO4, 2022, Electrochimica Acta.

[11]  C. Delacourt,et al.  Mathematical Modeling of Energy-Dense NMC Electrodes: I. Determination of Input Parameters , 2022, Journal of The Electrochemical Society.

[12]  N. Marzari,et al.  Accurate Electronic Properties and Intercalation Voltages of Olivine-Type Li-Ion Cathode Materials from Extended Hubbard Functionals , 2022, PRX Energy.

[13]  S. Onori,et al.  Extending Life of Lithium-Ion Battery Systems by Embracing Heterogeneities via an Optimal Control-Based Active Balancing Strategy , 2022, IEEE Transactions on Control Systems Technology.

[14]  Xiangming He,et al.  Cobalt‐Free Cathode Materials: Families and their Prospects , 2022, Advanced Energy Materials.

[15]  Jun Wu,et al.  Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries , 2022, Energy Storage Materials.

[16]  F. Ruiz-Zepeda,et al.  Entering Voltage Hysteresis in Phase Separating Materials: Revealing the Thermodynamic Origin of a Newly Discovered Phenomenon and Its Impact on the Electric Response of a Battery , 2021, SSRN Electronic Journal.

[17]  T. Wani,et al.  A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance , 2021, Journal of Energy Storage.

[18]  Shubham Agrawal,et al.  Dynamic interplay between phase transformation instabilities and reaction heterogeneities in particulate intercalation electrodes , 2021, Cell Reports Physical Science.

[19]  Xiaobo Ji,et al.  Olivine LiMnxFe1−xPO4 cathode materials for lithium ion batteries: restricted factors of rate performances , 2021 .

[20]  Z. Bakenov,et al.  Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review , 2021 .

[21]  Alex J. Hebert,et al.  The role of metal substitutions in the development of Li batteries, part I: cathodes , 2021, Materials Advances.

[22]  Claudio V. Di Leo,et al.  A thermodynamically consistent gradient theory for diffusion–reaction–deformation in solids: Application to conversion-type electrodes , 2021 .

[23]  A. Latz,et al.  Efficient Simulation of Chemical–Mechanical Coupling in Battery Active Particles , 2021, Energy Technology.

[24]  Xiangming He,et al.  Graphite as anode materials: Fundamental mechanism, recent progress and advances , 2021 .

[25]  B. Nestler,et al.  Multiphase-field modeling of spinodal decomposition during intercalation in an Allen-Cahn framework , 2021 .

[26]  R. Braatz,et al.  Fictitious phase separation in Li layered oxides driven by electro-autocatalysis , 2021, Nature Materials.

[27]  M. Kamlah,et al.  Electrochemical Modeling of Hierarchically Structured Lithium‐Ion Battery Electrodes , 2021, Energy Technology.

[28]  M. Burghammer,et al.  Combining operando X-ray experiments and modelling to understand the heterogeneous lithiation of graphite electrodes , 2021, Journal of Materials Chemistry A.

[29]  Daniel A. Cogswell,et al.  Electrochemical ion insertion from the atomic to the device scale , 2020, Nature Reviews Materials.

[30]  S. Shi,et al.  Application of phase-field method in rechargeable batteries , 2020, npj Computational Materials.

[31]  Marco Piñón,et al.  I Overview , 2020, The Diaries and Letters of Lord Woolton 1940-1945.

[32]  A. B. Muñoz-García,et al.  Structural evolution of disordered LiCo1/3Fe1/3Mn1/3PO4 in lithium batteries uncovered , 2020 .

[33]  W. Chueh,et al.  Theory of coupled ion-electron transfer kinetics , 2020, 2007.12980.

[34]  Bingkun Guo,et al.  An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries , 2020, Advanced Energy Materials.

[35]  Ya‐Xia Yin,et al.  Towards better Li metal anodes: Challenges and strategies , 2020 .

[36]  P. Ngoepe,et al.  First-principles study: Effect of lithium and sodium intercalation in transition metal phosphates, MPO4 (M: Mn, Fe, Co) , 2020 .

[37]  Zachary D. Hood,et al.  Lithium‐Battery Anode Gains Additional Functionality for Neuromorphic Computing through Metal–Insulator Phase Separation , 2020, Advanced materials.

[38]  D. Caliste,et al.  Thermodynamics and Related Kinetics of Staging in Intercalation Compounds , 2019, The Journal of Physical Chemistry C.

[39]  T. Gao,et al.  Modeling the Metal–Insulator Phase Transition in LixCoO2 for Energy and Information Storage , 2019, Advanced Functional Materials.

[40]  A. Gheribi,et al.  Modelling of phase equilibria of LiFePO 4 ‐FePO 4 olivine join for cathode material , 2019, The Canadian Journal of Chemical Engineering.

[41]  A. Gross,et al.  Phase field parameters for battery compounds from first-principles calculations , 2019, Physical Review Materials.

[42]  M. Bazant,et al.  Population dynamics of driven autocatalytic reactive mixtures. , 2019, Physical review. E.

[43]  Xinlong Wang,et al.  Microwave-assisted rheological phase synthesis of LiFe0.5Mn0.3Co0.2PO4/C cathode materials for lithium ion batteries , 2018, Materials Research Express.

[44]  William E. Gent,et al.  Fluid-enhanced surface diffusion controls intraparticle phase transformations , 2018, Nature Materials.

[45]  Daniel A. Cogswell,et al.  Size-dependent phase morphologies in LiFePO4 battery particles , 2018, Electrochemistry Communications.

[46]  A. Mauger,et al.  Olivine Positive Electrodes for Li-Ion Batteries: Status and Perspectives , 2018 .

[47]  A. Hector,et al.  Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries , 2018 .

[48]  M. Wagemaker,et al.  Operando Neutron Depth Profiling to Determine the Spatial Distribution of Li in Li-ion Batteries , 2018, Front. Energy Res..

[49]  T. Abe,et al.  Evolution and Migration of Lithium-Deficient Phases during Electrochemical Delithiation of Large Single Crystals of LiFePO4 , 2018 .

[50]  Martin Z. Bazant,et al.  Toward Optimal Performance and In‐Depth Understanding of Spinel Li4Ti5O12 Electrodes through Phase Field Modeling , 2018 .

[51]  M. Armand,et al.  Li(Ni,Co)PO4 as cathode materials for lithium batteries: Will the dream come true? , 2017 .

[52]  E. H. Chimowitz,et al.  Statistical Physics: A Prelude and Fugue for Engineers , 2017 .

[53]  Guohua Chen,et al.  Recent Advances of Mn‐Rich LiFe1‐yMnyPO4 (0.5 ≤ y < 1.0) Cathode Materials for High Energy Density Lithium Ion Batteries , 2017 .

[54]  M. Bazant,et al.  Explaining key properties of lithiation in TiO$_2$-anatase Li-ion battery electrodes using phase-field modelling , 2017, 1706.09686.

[55]  M. Bazant Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis. , 2017, Faraday discussions.

[56]  Y. Orikasa,et al.  Hidden Two-Step Phase Transition and Competing Reaction Pathways in LiFePO4 , 2017 .

[57]  V. K. Peterson,et al.  In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery , 2017 .

[58]  M. Bazant,et al.  Multiphase Porous Electrode Theory , 2017, 1702.08432.

[59]  M. Bazant,et al.  Intercalation Kinetics in Multiphase-Layered Materials , 2017, 1701.08858.

[60]  J. Owen,et al.  In situ phase behaviour of a high capacity LiCoPO4 electrode during constant or pulsed charge of a lithium cell. , 2016, Chemical communications.

[61]  Yayuan Liu,et al.  Direct and continuous strain control of catalysts with tunable battery electrode materials , 2016, Science.

[62]  Roberto Piazza,et al.  Statistical Physics: A Prelude and Fugue for Engineers , 2016 .

[63]  Fiona C. Strobridge,et al.  Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFexCo1–xPO4 , 2016 .

[64]  C. Wolverton,et al.  Transition-Metal Mixing and Redox Potentials in Lix(M1-yM′y)PO4 (M, M′ = Mn, Fe, Ni) Olivine Materials from First-Principles Calculations , 2016 .

[65]  Y. Chiang,et al.  Engineering the Transformation Strain in LiMnyFe1-yPO4 Olivines for Ultrahigh Rate Battery Cathodes. , 2016, Nano letters.

[66]  Yiyang Li,et al.  Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. , 2014, Nature materials.

[67]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[68]  Jonathan P. Wright,et al.  Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. , 2014, Nano letters.

[69]  Tingfeng Yi,et al.  Understanding the thermal and mechanical stabilities of olivine-type LiMPO4 (M = Fe, Mn) as cathode materials for rechargeable lithium batteries from first principles. , 2014, ACS applied materials & interfaces.

[70]  Y. Chiang,et al.  Extended solid solutions and coherent transformations in nanoscale olivine cathodes. , 2014, Nano letters.

[71]  Martin Z. Bazant,et al.  Phase Transformation Dynamics in Porous Battery Electrodes , 2014, 1401.7072.

[72]  Y. Chiang,et al.  In-Situ Study of Electrochemically-Driven Phase Transitions in LiMn y Fe 1- Y PO 4 , 2013 .

[73]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[74]  D. Aurbach,et al.  Collective Phase Transition Dynamics in Microarray Composite LixFePO4 Electrodes Tracked by in Situ Electrochemical Quartz Crystal Admittance , 2013 .

[75]  Martin Z. Bazant,et al.  Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles , 2013 .

[76]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[77]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[78]  Peng Bai,et al.  Statistical kinetics of phase-transforming nanoparticles in LiFePO4 porous electrodes , 2012, 1210.7199.

[79]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[80]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[81]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[82]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[83]  Wolfgang Dreyer,et al.  The behavior of a many-particle electrode in a lithium-ion battery , 2011 .

[84]  J. Whitacre,et al.  Li Diffusivity and Phase Change in LiFe0.5Mn0.5PO4: AComparative Study using Galvanostatic Intermittent Titrationand Cyclic Voltammetry , 2011 .

[85]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[86]  Rahul Malik,et al.  Phase diagram and electrochemical properties of mixed olivines from first-principles calculations , 2009 .

[87]  H. Ehrenberg,et al.  Mixed LiCo(0.6)M(0.4)PO(4) (M = Mn, Fe, Ni) phosphates: cycling mechanism and thermal stability. , 2009, Physical chemistry chemical physics : PCCP.

[88]  A. Yamada,et al.  Shift of redox potential and kinetics in Lix(MnyFe1−y)PO4 , 2009 .

[89]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[90]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[91]  G. Ceder,et al.  Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4. , 2006, Physical review letters.

[92]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[93]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[94]  R. Rauh Electrochromic windows: an overview , 1999 .

[95]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[96]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[97]  J. E. Hilliard,et al.  Spinodal decomposition: A reprise , 1971 .

[98]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[99]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[100]  I. Taniguchi,et al.  Synthesis of LiNi1−xCoxPO4/C nanocomposite cathode for lithium ion batteries by a combination of aerosol and powder technologies , 2019, Advanced Powder Technology.

[101]  K. Jalkanen,et al.  Electrochemical performance and delithiation/lithiation characteristics of mixed LiFe1-yMyPO4 (M =Co,Ni) electrode materials , 2015 .

[102]  Jaemin Shin,et al.  Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation , 2014 .

[103]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[104]  E. P. Lewis In perspective. , 1972, Nursing outlook.