Exploring the non-linear density field in the Millennium Simulations with tessellations – I. The probability distribution function

We use the Delaunay Tessellation Field Estimator (DTFE) to study the one-point density distribution functions of the Millennium (MS) and Millennium-II (MS-II) simulations. The DTFE technique is based directly on the particle positions, without requiring any type of smoothing or analysis grid, thereby providing high sensitivity to all non-linear structures resolved by the simulations. In order to identify the detailed origin of the shape of the one-point density probability distribution function (PDF), we decompose the simulation particles according to the mass of their host FoF halos, and examine the contributions of different halo mass ranges to the global density PDF. We model the one-point distribution of the FoF halos in each halo mass bin with a set of Monte Carlo realizations of idealized NFW dark matter halos, finding that this reproduces the measurements from th e N-body simulations reasonably well, except for a small excess present in simulation result s. This excess increases with increasing halo mass. We show that its origin lies in substructure, which becomes progressively more abundant and better resolved in more massive dark matter halos. We demonstrate that the high density tail of the one-point distribution functio n in less massive halos is severely affected by the gravitational softening length and the mass resolution. In particular, we find these two parameters to be more important for an accurate measurement of the density PDF than the simulated volume. Combining our results from individual halo mass bins we find that the part of the one-point density PDF originating from collapsed halos can nevertheless be quite well described by a simple superposition of a set of NFW halos with the expected cosmological abundance over the resolved mass range. The transition region to the low-density unbound material is however not well captured by such an analytic halo model.

[1]  Alexander S. Szalay,et al.  origami: DELINEATING HALOS USING PHASE-SPACE FOLDS , 2012, 1201.2353.

[2]  Oliver Hahn,et al.  Tracing the dark matter sheet in phase space , 2011, 1111.3944.

[3]  G. Vegter,et al.  Structural analysis of the SDSS Cosmic Web – I. Non-linear density field reconstructions , 2011, 1107.1488.

[4]  Michal Maciejewski,et al.  Haloes gone MAD: The Halo-Finder Comparison Project , 2011, 1104.0949.

[5]  V. Springel,et al.  GENUS STATISTICS USING THE DELAUNAY TESSELLATION FIELD ESTIMATION METHOD. I. TESTS WITH THE MILLENNIUM SIMULATION AND THE SDSS DR7 , 2010, 1006.3768.

[6]  M. Kamionkowski,et al.  Galactic substructure and dark-matter annihilation in the Milky Way halo , 2010, 1001.3144.

[7]  J. Silk,et al.  Exploring Dark Matter with Milky Way Substructure , 2009, Science.

[8]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[9]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[10]  Durham,et al.  Phase-space structure in the local dark matter distribution and its signature in direct detection experiments , 2008, 0812.0362.

[11]  V. Springel,et al.  Phase‐space structures – II. Hierarchical Structure Finder , 2008, 0812.0288.

[12]  V. Springel,et al.  Prospects for detecting supersymmetric dark matter in the Galactic halo , 2008, Nature.

[13]  Michael Kuhlen,et al.  The Dark Matter Annihilation Signal from Galactic Substructure: Predictions for GLAST , 2008, 0805.4416.

[14]  Astronomy,et al.  The statistics of lambda CDM Halo Concentrations , 2007, 0706.2919.

[15]  J. University,et al.  The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution , 2007, 0705.2072.

[16]  P. Madau,et al.  Early Supersymmetric Cold Dark Matter Substructure , 2006, astro-ph/0603250.

[17]  Risa H. Wechsler,et al.  The shape of dark matter haloes : dependence on mass, redshift, radius and formation , 2005, astro-ph/0508497.

[18]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[19]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[20]  E. Branchini,et al.  Difficulty of detecting minihalos via gamma rays from dark matter annihilation. , 2005, Physical review letters.

[21]  J. Bagla,et al.  Comments on the size of the simulation box in cosmological N‐body simulations , 2004, astro-ph/0410373.

[22]  H. C. F. Astrophysics,et al.  Numerical estimation of densities , 2004, astro-ph/0409233.

[23]  J. Bailin,et al.  Internal and External Alignment of the Shapes and Angular Momenta of ΛCDM Halos , 2004, astro-ph/0408163.

[24]  A. Evrard,et al.  Shapes and Alignments of Galaxy Cluster Halos , 2004, astro-ph/0408056.

[25]  S. White,et al.  The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.

[26]  M. Neyrinck,et al.  voboz: an almost-parameter-free halo-finding algorithm , 2004, astro-ph/0402346.

[27]  A. Zentner,et al.  Observability of gamma rays from neutralino annihilations in the Milky Way substructure , 2003, astro-ph/0309464.

[28]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[29]  R. van de Weygaert,et al.  Density estimators in particle hydrodynamics DTFE versus regular SPH , 2003, astro-ph/0303071.

[30]  T. Hamana,et al.  Non-Gaussian tails of cosmological density distribution function from dark halo approach , 2002, astro-ph/0210507.

[31]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[32]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[33]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[34]  Y. Suto,et al.  Probability Distribution Function of Cosmological Density Fluctuations from a Gaussian Initial Condition: Comparison of One-Point and Two-Point Lognormal Model Predictions with N-Body Simulations , 2001, astro-ph/0105218.

[35]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[36]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[37]  Y. Jing The Density Profile of Equilibrium and Nonequilibrium Dark Matter Halos , 1999, astro-ph/9901340.

[38]  P. Ullio,et al.  Clumpy Neutralino Dark Matter , 1998, astro-ph/9806072.

[39]  D. Eisenstein,et al.  HOP: A New Group-finding Algorithm for N-Body Simulations , 1997, astro-ph/9712200.

[40]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[41]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[42]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[43]  S. Colombi A 'skewed' lognormal approximation to the probablility distribution function of the large-scale density field , 1994, astro-ph/9402071.

[44]  A. Dekel,et al.  Evolution of one-point distributions from Gaussian initial fluctuations , 1993, astro-ph/9311028.

[45]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[46]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[47]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[48]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[49]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[50]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[51]  W. Schaap DTFE : the Delaunay Tessellation Field Estimator , 2007 .

[52]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[53]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[54]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[55]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[56]  October I Physical Review Letters , 2022 .