The ultrathin PEALD-GaN surface/interface layer-modulated charge dynamics in quantum dot-sensitized solar cells

[1]  Yimeng Song,et al.  Graphene-assisted low temperature growth of nearly single-crystalline GaN thin films via plasma-enhanced atomic layer deposition , 2023, Applied Physics Letters.

[2]  Yueping Fang,et al.  Dual Ligand Capped Quantum Dots Improving Loading Amount for High-Efficiency Quantum Dot-Sensitized Solar Cells , 2022, ACS Energy Letters.

[3]  Huailiang Xu,et al.  Laser-engineered black rutile TiO2 photoanode for CdS/CdSe-sensitized quantum dot solar cells with a significant power conversion efficiency of 9.1% , 2022, Applied Surface Science.

[4]  Yingfang Yao,et al.  Over 15% Efficiency PbS Quantum‐Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction , 2022, Advanced Energy Materials.

[5]  F. Huang,et al.  Nucleation Temperature‐Dependent Synthesis of Polytypic CuInSe 2 Nanostructures with Variable Tetrapod‐Like and Core‐Shell Morphologies , 2022, ChemNanoMat.

[6]  Yimeng Song,et al.  Two-Step Deposition of an Ultrathin GaN Film on a Monolayer MoS2 Template. , 2022, ACS applied materials & interfaces.

[7]  Wenxing Yang,et al.  Highly efficient quantum-dot-sensitized solar cells with composite semiconductor of ZnO nanorod and oxide inverse opal in photoanode , 2022, Electrochimica Acta.

[8]  Yannan Zhang,et al.  Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells , 2022, Nano Research.

[9]  Yimeng Song,et al.  Interfacial carrier transport properties of a gallium nitride epilayer/quantum dot hybrid structure , 2022, RSC advances.

[10]  Yueping Fang,et al.  Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. , 2021, Journal of the American Chemical Society.

[11]  Yimeng Song,et al.  Photoexcited carrier dynamics within alloyed CdSeTe colloidal quantum dots and at the CdSeTe/TiO2 interface , 2020 .

[12]  Zhenxiao Pan,et al.  Zn-Cu-In-S-Se Quinary "Green" Alloyed Quantum Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4. , 2020, Angewandte Chemie.

[13]  Cuong Dang,et al.  Solution-processed Ga-TiO2 electron transport layer for efficient inverted organic solar cells , 2020 .

[14]  F. Zaera,et al.  Baking and plasma pretreatment of sapphire surfaces as a way to facilitate the epitaxial plasma-enhanced atomic layer deposition of GaN thin films , 2020 .

[15]  Yimeng Song,et al.  Plasma-enhanced atomic layer deposition of gallium nitride thin films on fluorine-doped tin oxide glass substrate for future photovoltaic application , 2020 .

[16]  Guohua Wu,et al.  Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. , 2019, Chemical Society reviews.

[17]  Dongmei Li,et al.  Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells , 2019, Journal of Materials Chemistry A.

[18]  Zhenxiao Pan,et al.  MOF Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High Efficiency Quantum Dot Sensitized Solar Cells. , 2019, The journal of physical chemistry letters.

[19]  Jian-guo Tang,et al.  Plasmonic Effect with Tailored Au@TiO2 Nanorods in Photoanode for Quantum Dot Sensitized Solar Cells , 2019, ACS Applied Energy Materials.

[20]  Peng Qiu,et al.  Interface modification for high-efficient quantum dot sensitized solar cells using ultrathin aluminum nitride coating , 2019, Applied Surface Science.

[21]  M. Artemyev,et al.  Performance improvement strategies for quantum dot-sensitized solar cells: a review , 2019, Journal of Materials Chemistry A.

[22]  M. B. Upama,et al.  Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells , 2018, ACS Applied Energy Materials.

[23]  G. Cao,et al.  Hierarchical ZnO microspheres photoelectrodes assembled with Zn chalcogenide passivation layer for high efficiency quantum dot sensitized solar cells , 2018, Journal of Power Sources.

[24]  J. Matos,et al.  Microwave-assisted synthesis of C-doped TiO 2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells , 2018 .

[25]  Z. Shariatinia,et al.  Al3+ doping into TiO2 photoanodes improved the performances of amine anchored CdS quantum dot sensitized solar cells , 2018 .

[26]  Q. Meng,et al.  Recent progress of colloidal quantum dot based solar cells , 2018 .

[27]  Guannan Xiao,et al.  All-solid-state quantum-dot-sensitized solar cells with compact PbS quantum-dot thin films and TiO2 nanorod arrays , 2017 .

[28]  Yanhong Luo,et al.  Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability , 2016 .

[29]  J. Tian,et al.  Recent advances in counter electrodes of quantum dot-sensitized solar cells , 2016 .

[30]  P. Reece,et al.  Synthesis of type-II CdSe(S)/Fe2O3 core/shell quantum dots: the effect of shell on the properties of core/shell quantum dots , 2016, Journal of Materials Science.

[31]  T. Emrick,et al.  Understanding Interface Engineering for High‐Performance Fullerene/Perovskite Planar Heterojunction Solar Cells , 2016 .

[32]  Yanhong Luo,et al.  Enhanced charge collection with ultrathin AlOx electron blocking layer for hole-transporting material-free perovskite solar cell. , 2015, Physical chemistry chemical physics : PCCP.

[33]  Xichuan Yang,et al.  Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dot-sensitized solar cells , 2014 .

[34]  Jian Lu,et al.  Efficient Ternary CdSSe Quantum‐Dot‐Sensitized Solar Cells based on MgO‐coated TiO2 Nanoparticles , 2014 .

[35]  K. Prabakar,et al.  Surface modification on TiO2 nanoparticles in CdS/CdSe Quantum Dot-sensitized Solar Cell , 2014 .

[36]  Ke Zhao,et al.  Near infrared absorption of CdSe(x)Te(1-x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. , 2013, ACS nano.

[37]  Ping Yang,et al.  Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy. , 2013, Luminescence (Chichester, England Print).

[38]  Yuan Lin,et al.  Improved performance of CdSe quantum dot-sensitized TiO2 thin film by surface treatment with TiCl4 , 2012 .

[39]  Shixin Wu,et al.  Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 junction. , 2011, Chemistry.