A Unique Costly Contemplation Representation
暂无分享,去创建一个
[1] Dirk Bergemann,et al. Information in Mechanism Design , 2005 .
[2] Kellen Petersen August. Real Analysis , 2009 .
[3] P. Billingsley,et al. Probability and Measure , 1980 .
[4] N. Persico. Information acquisition in auctions , 2000 .
[5] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[6] A. Rustichini,et al. Representing preferences with a unique subjective state space: A corrigendum , 2007 .
[7] A. Rustichini,et al. Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .
[8] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[9] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[10] David M. Kreps. A REPRESENTATION THEOREM FOR "PREFERENCE FOR FLEXIBILITY" , 1979 .
[11] Andreu Mas-Colell,et al. The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .
[12] Wojciech Olszewski,et al. Preferences Over Sets of Lotteries -super-1 , 2007 .
[13] Barton L. Lipman. Information Processing and Bounded Rationality: A Survey , 1995 .
[14] The unique minimal dual representation of a convex function , 2010 .
[15] Barton L. Lipman. How to Decide How to Decide How to. . . : Modeling Limited Rationality , 1991 .
[16] Wojciech Olszewski,et al. Preferences over Sets of Lotteries , 2006 .
[17] Barton L. Lipman,et al. REPRESENTING PREFERENCES WITH A UNIQUE SUBJECTIVE STATE SPACE , 2001 .
[18] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[19] Massimo Marinacci,et al. Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.
[20] R. Phelps. Convex Functions, Monotone Operators and Differentiability , 1989 .
[21] L. Hörmander. Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .
[22] Todd Sarver,et al. ANTICIPATING REGRET : WHY FEWER OPTIONS MAY BE BETTER , 2008 .
[23] Edi Karni,et al. A Definition of Subjective Probabilities with State-Dependent Preferences , 1993 .
[24] R. Holmes. Geometric Functional Analysis and Its Applications , 1975 .
[25] Jerry R. Green. “Making Book Against Oneself,” the Independence Axiom, and Nonlinear Utility Theory , 1987 .
[26] Kazuya Hyogo,et al. A subjective model of experimentation , 2007, J. Econ. Theory.
[27] Massimo Marinacci,et al. Coarse contingencies and ambiguity , 2007 .
[28] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[29] D. Blackwell. Equivalent Comparisons of Experiments , 1953 .
[30] I. Gilboa,et al. Maxmin Expected Utility with Non-Unique Prior , 1989 .
[31] Costly Contemplation ∗ , 2003 .
[32] Faruk Gul,et al. Temptation and Self‐Control , 1999 .
[33] I. Ekeland,et al. Infinite-Dimensional Optimization And Convexity , 1983 .
[34] J. Mossin. A Note on Uncertainty and Preferences in a Temporal Context , 1969 .
[35] Dirk Bergemann,et al. Information Acquisition and Efficient Mechanism Design , 2000 .
[36] A. Rustichini,et al. Ambiguity Aversion, Malevolent Nature, and the Variational Representation of Preferences , 2004 .
[37] Massimo Marinacci,et al. COARSE CONTINGENCIES , 2005 .
[38] Kim C. Border,et al. Infinite dimensional analysis , 1994 .
[39] Aldo Rustichini,et al. Temptation-Driven Preferences , 2009 .