Defining Genes in the Genomics Era

Even with the availability of the genome sequences of many different organisms, we are still left wondering about the definition of a true gene. In their Perspective, Snyder and Gerstein discuss different criteria that can be used to define what a gene is in the era of genomics.

[1]  S. P. Fodor,et al.  Large-Scale Transcriptional Activity in Chromosomes 21 and 22 , 2002, Science.

[2]  B. Dujon,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 4. The genome of Saccharomyces cerevisiae revisited , 2000, FEBS letters.

[3]  M. Snyder,et al.  Genome-wide mutant collections: toolboxes for functional genomics. , 2000, Current opinion in microbiology.

[4]  Michael Q. Zhang Computational prediction of eukaryotic protein-coding genes , 2002, Nature Reviews Genetics.

[5]  S. Eddy Computational Genomics of Noncoding RNA Genes , 2002, Cell.

[6]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[7]  G. Fink,et al.  Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. , 1996, Genetics.

[8]  Christine E. Horak,et al.  Global analysis of gene expression in yeast , 2002, Functional & Integrative Genomics.

[9]  R. Falk,et al.  What is a gene? , 1986, Studies in history and philosophy of science.

[10]  C. Zhang,et al.  Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve. , 2000, Nucleic acids research.

[11]  M. Gerstein,et al.  A question of size: the eukaryotic proteome and the problems in defining it. , 2002, Nucleic acids research.

[12]  M. Snyder,et al.  A novel mitochondrial protein, Tar1p, is encoded on the antisense strand of the nuclear 25S rDNA. , 2002, Genes & development.

[13]  M. Gerstein,et al.  Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. , 2002, Genome research.

[14]  Maria Kowalczuk,et al.  How many protein‐coding genes are there in the Saccharomyces cerevisiae genome? , 2002, Yeast.

[15]  M. Morange,et al.  The Misunderstood Gene , 2001 .

[16]  S. Karlin,et al.  Finding the genes in genomic DNA. , 1998, Current opinion in structural biology.

[17]  R. Quatrano Genomics , 1998, Plant Cell.

[18]  J. Steitz,et al.  A mammalian gene with introns instead of exons generating stable RNA products , 1996, Nature.

[19]  M. Gerstein,et al.  Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. , 2002, Journal of molecular biology.

[20]  Christopher J. Lee,et al.  A genomic view of alternative splicing , 2002, Nature Genetics.

[21]  J. Rinn,et al.  The transcriptional activity of human Chromosome 22. , 2003, Genes & development.

[22]  S. Oliver,et al.  Erratum: Overview of the yeast genome , 1997, Nature.

[23]  C. Burge,et al.  Assessment of the total number of human transcription units. , 2001, Genomics.

[24]  Kei-Hoi Cheung,et al.  An integrated approach for finding overlooked genes in yeast , 2002, Nature Biotechnology.

[25]  Mark Gerstein,et al.  A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. , 2002, Journal of molecular biology.

[26]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[27]  S. Cebrat,et al.  Total number of coding open reading frames in the yeast genome , 1999, Yeast.

[28]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.