Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.

[1]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[2]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity , 1953 .

[3]  M. Sato,et al.  Rheological properties of living cytoplasm: a preliminary investigation of squid axoplasm (Loligo pealei). , 1984, Cell motility.

[4]  P A Valberg,et al.  Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. , 1987, Biophysical journal.

[5]  P A Valberg,et al.  Magnetic particle motions within living cells. Physical theory and techniques. , 1987, Biophysical journal.

[6]  E. Evans,et al.  Translational and rotational drag coefficients for a disk moving in a liquid membrane associated with a rigid substrate , 1988, Journal of Fluid Mechanics.

[7]  E. Evans,et al.  Molecular friction and epitactic coupling between monolayers in supported bilayers , 1989 .

[8]  D E Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton. , 1993, Science.

[9]  E. Sackmann,et al.  Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. , 1994, Biophysical journal.

[10]  R. Waugh,et al.  Passive mechanical behavior of human neutrophils: effect of cytochalasin B. , 1994, Biophysical journal.

[11]  R. Hochmuth,et al.  Role of the membrane cortex in neutrophil deformation in small pipets. , 1994, Biophysical Journal.

[12]  G. Forgacs Biological specificity and measurable physical properties of cell surface receptors and their possible role in signal transduction through the cytoskeleton. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[13]  Kenneth M. Yamada,et al.  Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function , 1995, Science.

[14]  E. Elson,et al.  Mechanical function of dystrophin in muscle cells , 1995, The Journal of cell biology.

[15]  P K Hansma,et al.  Measuring the viscoelastic properties of human platelets with the atomic force microscope. , 1996, Biophysical journal.

[16]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .

[17]  Daniel Choquet,et al.  Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages , 1997, Cell.

[18]  U G Hofmann,et al.  Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. , 1997, Journal of structural biology.

[19]  D. Ingber Tensegrity: the architectural basis of cellular mechanotransduction. , 1997, Annual review of physiology.

[20]  E. Sackmann,et al.  Membrane bending modulus and adhesion energy of wild-type and mutant cells of Dictyostelium lacking talin or cortexillins. , 1998, Biophysical journal.

[21]  Donald E. Ingber,et al.  Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions , 1998, Nature.