Local chromatic number and the Borsuk-Ulam Theorem
暂无分享,去创建一个
[1] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[2] G. Ziegler,et al. Generalized Kneser coloring theorems with combinatorial proofs , 2001, math/0103146.
[3] Xuding Zhu,et al. Circular chromatic number and Mycielski construction , 2003, J. Graph Theory.
[4] Seiya Negami,et al. Chromatic numbers of quadrangulations on closed surfaces , 2001, J. Graph Theory.
[5] Guohua Gu,et al. Circular chromatic number and a generalization of the construction of Mycielski , 2003, J. Comb. Theory, Ser. B.
[6] Gábor Simonyi,et al. Local chromatic number and Sperner capacity , 2005, J. Comb. Theory, Ser. B.
[7] Revaz Valerianovich Gamkrelidze,et al. Topology and Geometry , 1970 .
[8] P. Rowlinson. ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .
[9] E. Weisstein. Kneser's Conjecture , 2002 .
[10] Xuding Zhu,et al. Circular chromatic number of Kneser graphs , 2003, J. Comb. Theory, Ser. B.
[11] Anders Björner,et al. Neighborhood Complexes of Stable Kneser Graphs , 2003, Comb..
[12] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[13] A. Leaf. GRAPH THEORY AND PROBABILITY , 1957 .
[14] Xuding Zhu,et al. Circular chromatic number: a survey , 2001, Discret. Math..
[15] Joshua Evan Greene,et al. A New Short Proof of Kneser's Conjecture , 2002, Am. Math. Mon..
[16] Vojtech Rödl,et al. Coloring graphs with locally few colors , 1986, Discret. Math..
[17] Claude Tardif,et al. Fractional chromatic numbers of cones over graphs , 2001, J. Graph Theory.
[18] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[19] A. Johnson,et al. Multichromatic numbers, star chromatic numbers and Kneser graphs , 1997, J. Graph Theory.
[20] Ko-Wei Lih,et al. Circular chromatic numbers of some reduced Kneser graphs , 2002, J. Graph Theory.
[21] Michael Larsen,et al. The fractional chromatic number of mycielski's graphs , 1995, J. Graph Theory.
[22] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[23] R. Ho. Algebraic Topology , 2022 .
[24] Jiří Matoušek,et al. On the chromatic number of Kneser hypergraphs , 2002 .
[25] S. Skidmore,et al. At the Court of King Arthur , 1995 .
[26] A. Vince,et al. Star chromatic number , 1988, J. Graph Theory.
[27] John M. Talbot,et al. Intersecting Families of Separated Sets , 2002, math/0211314.
[28] Jiri Matousek,et al. Topological lower bounds for the chromatic number: A hierarchy , 2003 .
[29] Jan Mycielski. Sur le coloriage des graphs , 1955 .
[30] Michael Stiebitz,et al. On graphs with strongly independent color‐classes , 2004, J. Graph Theory.
[31] C. Berge. Fractional Graph Theory , 1978 .
[32] Igor Kriz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1999 .
[33] Paul D. Seymour,et al. Coloring Locally Bipartite Graphs on Surfaces , 2002, J. Comb. Theory, Ser. B.
[34] Genghua Fan,et al. Circular Chromatic Number and Mycielski Graphs , 2004, Comb..
[35] Imre Bárány,et al. A Short Proof of Kneser's Conjecture , 1978, J. Comb. Theory, Ser. A.
[36] A. Schrijver,et al. Vertex-critical subgraphs of Kneser-graphs , 1978 .
[37] D. Gale. 15. Neighboring Vertices on a Convex Polyhedron , 1957 .
[38] Pavol Hell,et al. A note on the star chromatic number , 1990, J. Graph Theory.
[39] I. Kríz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1992 .
[40] Xuding Zhu,et al. Circular chromatic numbers of Mycielski's graphs , 1999, Discret. Math..
[41] Eth Zentrum,et al. A Combinatorial Proof of Kneser's Conjecture , 2022 .