Local chromatic number and the Borsuk-Ulam Theorem

The local chromatic number of a graph was introduced in [13]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the stable Kneser (or Schrijver) graphs; Mycielski graphs, and their generalizations; and Borsuk graphs. We give more or less tight bounds for the local chromatic number of many of these graphs. Our method for the lower bounds on the local chromatic number is topological. We identify “topological reasons” for a graph to be at least t-chromatic. The above mentioned graphs satisfy these conditions if t is their chromatic number. We show that these conditions are enough to find t distinct colors “locally” (in a complete bipartite subgraph) in any proper coloring with an arbitrary number of colors. This yields a lower bound of ⌈t/2⌉ + 1 for the local chromatic number of these graphs, which is tight or almost tight in many cases. As a consequence of our results we find a generalization of (the LyusternikSchnirel’man version of) the Borsuk-Ulam Theorem. As another consequence, we also prove a conjecture of Johnson, Holroyd, and Stahl on the circular chromatic number of Kneser graphs in the case the chromatic number of the graph is even.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  G. Ziegler,et al.  Generalized Kneser coloring theorems with combinatorial proofs , 2001, math/0103146.

[3]  Xuding Zhu,et al.  Circular chromatic number and Mycielski construction , 2003, J. Graph Theory.

[4]  Seiya Negami,et al.  Chromatic numbers of quadrangulations on closed surfaces , 2001, J. Graph Theory.

[5]  Guohua Gu,et al.  Circular chromatic number and a generalization of the construction of Mycielski , 2003, J. Comb. Theory, Ser. B.

[6]  Gábor Simonyi,et al.  Local chromatic number and Sperner capacity , 2005, J. Comb. Theory, Ser. B.

[7]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[8]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[9]  E. Weisstein Kneser's Conjecture , 2002 .

[10]  Xuding Zhu,et al.  Circular chromatic number of Kneser graphs , 2003, J. Comb. Theory, Ser. B.

[11]  Anders Björner,et al.  Neighborhood Complexes of Stable Kneser Graphs , 2003, Comb..

[12]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[13]  A. Leaf GRAPH THEORY AND PROBABILITY , 1957 .

[14]  Xuding Zhu,et al.  Circular chromatic number: a survey , 2001, Discret. Math..

[15]  Joshua Evan Greene,et al.  A New Short Proof of Kneser's Conjecture , 2002, Am. Math. Mon..

[16]  Vojtech Rödl,et al.  Coloring graphs with locally few colors , 1986, Discret. Math..

[17]  Claude Tardif,et al.  Fractional chromatic numbers of cones over graphs , 2001, J. Graph Theory.

[18]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[19]  A. Johnson,et al.  Multichromatic numbers, star chromatic numbers and Kneser graphs , 1997, J. Graph Theory.

[20]  Ko-Wei Lih,et al.  Circular chromatic numbers of some reduced Kneser graphs , 2002, J. Graph Theory.

[21]  Michael Larsen,et al.  The fractional chromatic number of mycielski's graphs , 1995, J. Graph Theory.

[22]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[23]  R. Ho Algebraic Topology , 2022 .

[24]  Jiří Matoušek,et al.  On the chromatic number of Kneser hypergraphs , 2002 .

[25]  S. Skidmore,et al.  At the Court of King Arthur , 1995 .

[26]  A. Vince,et al.  Star chromatic number , 1988, J. Graph Theory.

[27]  John M. Talbot,et al.  Intersecting Families of Separated Sets , 2002, math/0211314.

[28]  Jiri Matousek,et al.  Topological lower bounds for the chromatic number: A hierarchy , 2003 .

[29]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[30]  Michael Stiebitz,et al.  On graphs with strongly independent color‐classes , 2004, J. Graph Theory.

[31]  C. Berge Fractional Graph Theory , 1978 .

[32]  Igor Kriz A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1999 .

[33]  Paul D. Seymour,et al.  Coloring Locally Bipartite Graphs on Surfaces , 2002, J. Comb. Theory, Ser. B.

[34]  Genghua Fan,et al.  Circular Chromatic Number and Mycielski Graphs , 2004, Comb..

[35]  Imre Bárány,et al.  A Short Proof of Kneser's Conjecture , 1978, J. Comb. Theory, Ser. A.

[36]  A. Schrijver,et al.  Vertex-critical subgraphs of Kneser-graphs , 1978 .

[37]  D. Gale 15. Neighboring Vertices on a Convex Polyhedron , 1957 .

[38]  Pavol Hell,et al.  A note on the star chromatic number , 1990, J. Graph Theory.

[39]  I. Kríz A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1992 .

[40]  Xuding Zhu,et al.  Circular chromatic numbers of Mycielski's graphs , 1999, Discret. Math..

[41]  Eth Zentrum,et al.  A Combinatorial Proof of Kneser's Conjecture , 2022 .