POLARIZED FAR-INFRARED AND SUBMILLIMETER EMISSION FROM INTERSTELLAR DUST

Polarized far-infrared (FIR) and submillimeter emission is calculated for models of nonspherical dust grains that are constrained to reproduce the observed wavelength-dependent extinction and polarization of starlight. For emission from regions where the magnetic field is perpendicular to the line of sight, the FIR emission is expected to have substantial linear polarization at wavelengths {lambda} {approx}> 100 {mu}m, but the degree of linear polarization, and its variation with wavelength, is model dependent. Models in which the starlight polarization is produced by both amorphous silicate and graphite grains have linear polarizations between 6% and 10% at {lambda}>100 {mu}m, but for some models in which only silicate grains are spheroidal, the linear polarization increases from about 3% at 100 {mu}m to about 15% at 1 mm. We briefly discuss the implications of these results for the removal of the polarized dust emission from maps of the cosmic microwave background, as well as the possibility of discriminating among interstellar dust models based on observations of FIR and submillimeter linear polarization.

[1]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[2]  B. Draine,et al.  Astrophysics of Dust , 2004 .

[3]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[4]  M. Mishchenko,et al.  Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. , 2000, Applied optics.

[5]  Yasuhiko Okada,et al.  Interstellar extinction by spheroidal dust grains , 2005 .

[6]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: GALACTIC FOREGROUND EMISSION , 2008, 0803.0715.

[7]  N. Voshchinnikov,et al.  Modelling interstellar extinction and polarization with spheroidal grains , 2008, Journal of Quantitative Spectroscopy and Radiative Transfer.

[8]  Y. Pendleton,et al.  The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints , 2002 .

[9]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW IN THE J, H, AND Ks BANDS TOWARD THE GALACTIC CENTER , 2006, astro-ph/0601174.

[10]  Geoffrey C. Clayton,et al.  Ultraviolet Interstellar Linear Polarization. V. Analysis of the Final Data Set , 1999 .

[11]  E. Barnard On a nebulous groundwork in the constellation Taurus. , 1907 .

[12]  Motohide Tamura,et al.  Interstellar polarization from 3 to 5 microns in reddened stars , 1992 .

[13]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[14]  C. H. Smith,et al.  Studies in mid-infrared spectropolarimetry - II. An atlas of spectra , 2000 .

[15]  David T. Leisawitz,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. III. Separation of Galactic Emission from the Infrared Sky Brightness , 1998, astro-ph/9805323.

[16]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[17]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[18]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[19]  G. Wright,et al.  Spectropolarimetry of the 3.4 μm Feature in the Diffuse ISM toward the Galactic Center Quintuplet Cluster , 2006, astro-ph/0607245.

[20]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[21]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[22]  P. Ehrenfreund Dust in the Galactic Environment/Second Edition. By D.C.B. Whittet, Institute of Physics Publishing, Bristol, 2002, paperback, 34.99 Pounds or 49.99 Dollars (ISBN 0750306246). , 2005, Origins of Life and Evolution of Biospheres.

[23]  J S Hall,et al.  Observations of the Polarized Light From Stars. , 1949, Science.

[24]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[25]  E. Barnard On a great nebulous region and the question of absorbing matter in space and the transparency of the nebulae. , 1910 .

[26]  J. J. Johnson,et al.  Ultraviolet Interstellar Polarization of Galactic Starlight.I.Observations by the Wisconsin Ultraviolet Photo Polarimeter Experiment , 1996 .

[27]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[28]  D. Ebbets,et al.  Abundance of interstellar carbon toward Zeta Ophiuchi , 1993 .

[29]  Microwave ISM Emission Observed by WMAP , 2003, astro-ph/0311547.

[30]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[31]  John E. Vaillancourt,et al.  Analysis of the Far-Infrared/Submillimeter Polarization Spectrum Based on Temperature Maps of Orion , 2002 .

[32]  Lazarian,et al.  Resonance Paramagnetic Relaxation and Alignment of Small Grains. , 2000, The Astrophysical journal.

[33]  W. A. Hiltner,et al.  Polarization of Light From Distant Stars by Interstellar Medium. , 1949, Science.

[34]  Marilyn R. Meade,et al.  The first spectropolarimetric study of the wavelength dependence of interstellar polarization in the ultraviolet , 1992 .

[35]  R. Blomme,et al.  Line formation in solar granulation VI. [Cl], Cl, CH and C2 lines and the photospheric C abundance , 2004, astro-ph/0410681.

[36]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[37]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[38]  B. Draine,et al.  X-Ray Scattering by Nonspherical Grains. I. Oblate Spheroids , 2006, astro-ph/0608037.

[39]  The Wavelength Dependence of Interstellar Extinction from 1.25 to 8.0 μm Using GLIMPSE Data , 2004, astro-ph/0406403.

[40]  B. Carlson,et al.  Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical-optics approximation. , 1997, Applied optics.

[41]  H. Bhatt,et al.  Interstellar extinction and polarization by spheroidal dust grains , 1984 .

[42]  K. Flaherty,et al.  Infrared Extinction toward Nearby Star-forming Regions , 2007, astro-ph/0703777.

[43]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[44]  P. Barber Absorption and scattering of light by small particles , 1984 .

[45]  J. Aumont,et al.  Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops , 2005 .

[46]  M. Wolff,et al.  Ultraviolet Interstellar Linear Polarization. III. Features , 1997 .

[47]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[48]  S. Malhotra,et al.  On graphite and the 2175 Å extinction profile , 1993 .

[49]  Larry D. Travis,et al.  T-matrix computations of light scattering by large spheroidal particles , 1994 .

[50]  Peter G. Martin,et al.  On the shape of interstellar grains , 1979 .

[51]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Polarization: Spheroids , 1995 .

[52]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[53]  Rudolf O. Müller,et al.  Absorption and Scattering of X-Rays , 1972 .

[54]  D. Finkbeiner Microwave Interstellar Medium Emission Observed by the Wilkinson Microwave Anisotropy Probe , 2004 .