DNase H Activity of Neisseria meningitidis Cas9.

Type II CRISPR systems defend against invasive DNA by using Cas9 as an RNA-guided nuclease that creates double-stranded DNA breaks. Dual RNAs (CRISPR RNA [crRNA] and tracrRNA) are required for Cas9's targeting activities observed to date. Targeting requires a protospacer adjacent motif (PAM) and crRNA-DNA complementarity. Cas9 orthologs (including Neisseria meningitidis Cas9 [NmeCas9]) have also been adopted for genome engineering. Here we examine the DNA cleavage activities and substrate requirements of NmeCas9, including a set of unusually complex PAM recognition patterns. Unexpectedly, NmeCas9 cleaves single-stranded DNAs in a manner that is RNA guided but PAM and tracrRNA independent. Beyond the need for guide-target pairing, this "DNase H" activity has no apparent sequence requirements, and the cleavage sites are measured from the 5' end of the DNA substrate's RNA-paired region. These results indicate that tracrRNA is not strictly required for NmeCas9 enzymatic activation, and expand the list of targeting activities of Cas9 endonucleases.

[1]  W. M. Lee,et al.  Hepatitis B virus infection. , 1997, The New England journal of medicine.

[2]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[3]  Ikuo Uchiyama,et al.  Genome comparison in silico in Neisseria suggests integration of filamentous bacteriophages by their own transposase. , 2005, DNA research : an international journal for rapid publication of reports on genes and genomes.

[4]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[5]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[6]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[7]  T. Lowe,et al.  Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum , 2012, Front. Microbio..

[8]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[9]  Jörg Vogel,et al.  Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. , 2013, Molecular cell.

[10]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[11]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[12]  Chase L. Beisel,et al.  Guide RNA functional modules direct Cas9 activity and orthogonality. , 2014, Molecular cell.

[13]  H. Seifert,et al.  The genetics of Neisseria species. , 2014, Annual review of genetics.

[14]  Peter C. Fineran,et al.  Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands , 2013, PLoS genetics.

[15]  Jennifer A. Doudna,et al.  A Cas9–guide RNA complex preorganized for target DNA recognition , 2015, Science.

[16]  S. Kanaya,et al.  Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes , 2009, The FEBS journal.

[17]  Luciano A. Marraffini,et al.  Cas9 specifies functional viral targets during CRISPR-Cas adaptation , 2015, Nature.

[18]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[19]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[20]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[21]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[22]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[23]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[24]  Scott Bailey,et al.  Cut Site Selection by the Two Nuclease Domains of the Cas9 RNA-guided Endonuclease* , 2014, The Journal of Biological Chemistry.

[25]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[26]  J. Oost,et al.  Unravelling the structural and mechanistic basis of CRISPR–Cas systems , 2014, Nature Reviews Microbiology.

[27]  Feng Gu,et al.  Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells , 2014, Scientific Reports.

[28]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[29]  Kira S. Makarova,et al.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.

[30]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[31]  Lluis Montoliu,et al.  Genome Editing , 2018, Advances in Experimental Medicine and Biology.

[32]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[33]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[34]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[35]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[36]  J. Dienstag,et al.  Hepatitis B Virus Infection , 2010 .

[37]  Daniel Mucida,et al.  CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. , 2012, Cell host & microbe.

[38]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[39]  M. Jinek,et al.  Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease , 2014, Nature.

[40]  Rodolphe Barrangou,et al.  CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. , 2014, Molecular cell.

[41]  처치 죠지엠.,et al.  Orthogonal cas9 proteins for rna-guided gene regulation and editing , 2014 .

[42]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[43]  G Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[44]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[45]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[46]  Jennifer A. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas 9 GENOME , 2014 .

[47]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[48]  R. Terns,et al.  Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. , 2008, RNA.

[49]  G. Fichant,et al.  Bacterial transformation: distribution, shared mechanisms and divergent control , 2014, Nature Reviews Microbiology.

[50]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[51]  R. Barrangou,et al.  The Bacterial Origins of the CRISPR Genome-Editing Revolution. , 2015, Human gene therapy.

[52]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[53]  Yanhui Hu,et al.  Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. , 2014, Cell reports.