Contrast‐enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization

To determine if a gadolinium‐based contrast agent provides additional information for characterization of human plaque tissues, particularly neovasculature. Although high‐resolution magnetic resonance imaging (MRI) has been used to identify plaque constituents in advanced atherosclerosis, some constituents, such as neovascularized tissue, defy detection.

[1]  K. Beach,et al.  The natural history of carotid arterial disease in asymptomatic patients with cervical bruits. , 1984, Stroke.

[2]  The natural history of carotid arterial disease in asymptomatic patients with cervical bruits. , 1985, Stroke.

[3]  Asymptomatic high-grade internal carotid artery stenosis: is stratification according to risk factors or duplex spectral analysis possible? , 1989, Journal of vascular surgery.

[4]  T K Foo,et al.  Techniques for high‐resolution MR imaging of atherosclerotic plaque , 1994, Journal of magnetic resonance imaging : JMRI.

[5]  W D Wagner,et al.  A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[6]  D. Heistad,et al.  [The vasa vasorum of the arteries]. , 1996, Journal des maladies vasculaires.

[7]  V. Fuster,et al.  Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. , 1996, Circulation.

[8]  R. Virmani,et al.  Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. , 1996, Journal of vascular surgery.

[9]  E. Haacke,et al.  Contrast‐enhanced magnetic resonance angiography of carotid arterial wall in pigs , 1997, Journal of magnetic resonance imaging : JMRI.

[10]  S. Glagov,et al.  Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis. , 1997, Journal of vascular surgery.

[11]  D. Woolley,et al.  Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries , 1999, The Journal of pathology.

[12]  A. Becker,et al.  Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization? , 1999, Cardiovascular research.

[13]  P R Bell,et al.  Angiogenesis and the atherosclerotic carotid plaque: association between symptomatology and plaque morphology , 1999, Journal of vascular surgery.

[14]  V. Fuster,et al.  The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[15]  M. Eliasziw,et al.  The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. , 2000, The New England journal of medicine.

[16]  R. Virmani,et al.  Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[17]  C. Yuan,et al.  Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In Vivo With High-Resolution Magnetic Resonance Imaging , 2000, Circulation.

[18]  Chun Yuan,et al.  In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. , 2002 .