5-reduced neurosteroids sex-dependently reverse central prenatal programming of neuroendocrine stress responses in rats

Maternalsocialstressduringlatepregnancyprogramshypothalamo-pituitary-adrenal(HPA)axishyper-responsivenesstostressors,suchthatadultprenatallystressed(PNS)offspringdisplayexaggeratedHPAaxisresponsestoaphysicalstressor(systemicinterleukin-1 (cid:3) ; IL-1 (cid:3) ) in adulthood, compared with controls. IL-1 (cid:3) acts via a noradrenergic relay from the nucleus tractus solitarii (NTS) to corticotropin releasing hormone neurons in the paraventricular nucleus (PVN). Neurosteroids can reduce HPA axis responses, so allopregnanolone and 3 (cid:3) -androstanediol(3 (cid:3) -diol;5 (cid:2) -reducedmetabolitesofprogesteroneandtestosterone,respectively)weregivensubacutely(over24h)toPNSrats to seek reversal of the “programmed” hyper-responsive HPA phenotype. Allopregnanolone attenuated ACTH responses to IL-1 (cid:3) (500 ng/kg, i.v.) in PNS females, but not in PNS males. However, 3 (cid:3) -diol normalized HPA axis responses to IL-1 (cid:3) in PNS males. Impairedtestosteroneand progesteronemetabolismorincreasedsecretioninPNSratswasindicatedbygreaterplasmatestosteroneandprogesteroneconcentrationsinmaleandfemalePNSrats,respectively.Deficitsincentralneurosteroidproductionwereindicatedbyreduced5 (cid:2) -reductasemRNAlevelsinbothmaleandfemale PNS offspring in the NTS, and in the PVN in males. In PNS females, adenovirus-mediated gene transfer was used to upregulate expression of 5 (cid:2) reductaseand3 (cid:2) -hydroxysteroiddehydrogenasemRNAsintheNTS,andthisnormalizedhyperactiveHPAaxisresponsestoIL-1 (cid:3) .Thus,downregu-lationofneurosteroidproductioninthebrainmayunderlieHPAaxishyper-responsivenessinprenatallyprogrammedoffspring,andadministrationof5 (cid:2) -reducedsteroidsacutelytoPNSratsoverridesprogrammingofhyperactiveHPAaxisresponsestoimmunechallengeinasex-dependentmanner.

[1]  J. Seckl,et al.  Sex-specific effects of prenatal stress on glucose homoeostasis and peripheral metabolism in rats. , 2013, The Journal of endocrinology.

[2]  S. Bouret,et al.  Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress , 2012, Psychoneuroendocrinology.

[3]  K. Double,et al.  Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra , 2012, BMC Neuroscience.

[4]  J. M. Torres,et al.  Steroid 5α‐reductase in adult rat brain after neonatal testosterone administration , 2012, IUBMB life.

[5]  M. Taves,et al.  Measurement of Steroid Concentrations in Brain Tissue: Methodological Considerations , 2011, Front. Endocrin..

[6]  J. Seckl,et al.  Glucocorticoids, prenatal stress and the programming of disease , 2011, Hormones and Behavior.

[7]  P. Brunton,et al.  Prenatal Social Stress in the Rat Programmes Neuroendocrine and Behavioural Responses to Stress in the Adult Offspring: Sex‐Specific Effects , 2010, Journal of neuroendocrinology.

[8]  E. Sabban,et al.  Modulation of Response to Stress by Estradiol Benzoate and Selective Estrogen Receptor Agonists , 2010, The Journal of endocrinology.

[9]  H. Vaudry,et al.  Neurosteroid biosynthesis: Enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides , 2009, Frontiers in Neuroendocrinology.

[10]  R. Yehuda,et al.  Enduring effects of severe developmental adversity, including nutritional deprivation, on cortisol metabolism in aging Holocaust survivors. , 2009, Journal of psychiatric research.

[11]  J. Russell,et al.  Central Opioid Inhibition of Neuroendocrine Stress Responses in Pregnancy in the Rat Is Induced by the Neurosteroid Allopregnanolone , 2009, The Journal of Neuroscience.

[12]  R. Handa,et al.  Estrogen receptor-beta agonist diarylpropionitrile: biological activities of R- and S-enantiomers on behavior and hormonal response to stress. , 2009, Endocrinology.

[13]  D. Hellhammer,et al.  Prenatal psychosocial stress exposure is associated with insulin resistance in young adults. , 2008, American journal of obstetrics and gynecology.

[14]  J. Herman,et al.  Functional role of local GABAergic influences on the HPA axis , 2008, Brain Structure and Function.

[15]  M. Weinstock The long-term behavioural consequences of prenatal stress , 2008, Neuroscience & Biobehavioral Reviews.

[16]  J. Lambert,et al.  Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. , 2007, Pharmacology & therapeutics.

[17]  J. Herman,et al.  Estrogen potentiates adrenocortical responses to stress in female rats. , 2007, American journal of physiology. Endocrinology and metabolism.

[18]  Paul E. Sawchenko,et al.  Regional Differentiation of the Medial Prefrontal Cortex in Regulating Adaptive Responses to Acute Emotional Stress , 2006, The Journal of Neuroscience.

[19]  J. M. Torres,et al.  Steroid 5alpha-reductase isozymes in the adult female rat brain: central role of dihydrotestosterone. , 2006, Journal of molecular endocrinology.

[20]  James P. Herman,et al.  Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis , 2005, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[21]  J. Lambert,et al.  Neurosteroids: endogenous regulators of the GABAA receptor , 2005, Nature Reviews Neuroscience.

[22]  A. Douglas,et al.  Endogenous Opioids and Attenuated Hypothalamic-Pituitary-Adrenal Axis Responses to Immune Challenge in Pregnant Rats , 2005, The Journal of Neuroscience.

[23]  J. Seckl Prenatal glucocorticoids and long-term programming. , 2004, European journal of endocrinology.

[24]  R. Handa,et al.  Androgen Inhibits, While Oestrogen Enhances, Restraint‐Induced Activation of Neuropeptide Neurones in the Paraventricular Nucleus of the Hypothalamus , 2004, Journal of neuroendocrinology.

[25]  T. Penning,et al.  Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. , 2003, The Journal of biological chemistry.

[26]  F. Benes,et al.  Effects of pre‐ and postnatal corticosterone exposure on the rat hippocampal GABA system , 2001, Hippocampus.

[27]  N. Toschi,et al.  Maternal defence as an emotional stressor in female rats: correlation of neuroendocrine and behavioural parameters and involvement of brain oxytocin , 2001, The European journal of neuroscience.

[28]  S. Mellon,et al.  Neurosteroids: Biosynthesis and Function of These Novel Neuromodulators , 2000, Frontiers in Neuroendocrinology.

[29]  J. Herman,et al.  Differential forebrain c-fos mRNA induction by ether inhalation and novelty: evidence for distinctive stress pathways , 1999, Brain Research.

[30]  C Labrie,et al.  Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. , 1998, Journal of neurobiology.

[31]  F. Holsboer,et al.  The Neurosteroid Tetrahydroprogesterone Attenuates the Endocrine Response to Stress and Exerts Glucocorticoid-like Effects on Vasopressin Gene Transcription in the Rat Hypothalamus , 1996, Neuropsychopharmacology.

[32]  V. Viau,et al.  The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  R. Handa,et al.  Gonadal Steroid Hormone Receptors and Sex Differences in the Hypothalamo-Pituitary-Adrenal Axis , 1994, Hormones and Behavior.

[34]  F. Holsboer,et al.  The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus , 1994, Neuroscience.

[35]  P. Sawchenko,et al.  A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  V. Viau,et al.  Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. , 2005, Endocrinology.

[37]  R. Handa,et al.  Estrogen receptor (ER)beta isoforms rather than ERalpha regulate corticotropin-releasing hormone promoter activity through an alternate pathway. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  C. Osmond,et al.  Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth , 2004, Diabetologia.

[39]  H. Vaudry,et al.  Biosynthesis of neurosteroids and regulation of their synthesis. , 2001, International review of neurobiology.

[40]  J. Gustafsson,et al.  Irreversible androgenic programming at birth of microsomal and soluble rat liver enzymes active on androstene-3,17-dione and 5alpha-androstane-3alpha,17beta-diol. , 1974, The Journal of biological chemistry.