C I Emission in Ultraluminous Infrared Galaxies as a Molecular Gas Mass Tracer

We present new sensitive wide-band measurements of the fine-structure line 3P1 → 3P0 (J = 1-0, 492 GHz) of neutral atomic carbon (C I) in the two typical ultraluminous infrared galaxies (ULIRGs) NGC 6240 and Arp 220. We then use them along with several other C I measurements in similar objects found in the literature to estimate their global molecular gas content under the assumption of a full C I-H2 concomitance. We find excellent agreement between the H2 gas mass estimated with this method and the standard methods using 12CO. This may provide a new way to measure H2 gas mass in galaxies and one that may be very valuable in ULIRGs since in such systems the bright 12CO emission is known to systematically overestimate the gas mass while their 13CO emission (an often-used alternative) is usually very weak. At redshifts z ≥ 1 the C I J = 1-0 line shifts to much more favorable atmospheric windows and can become a viable alternative tracer of the H2 gas, fueling starburst events in the distant universe.

[1]  W. Thi,et al.  C i lines as tracers of molecular gas, and their prospects at high redshifts , 2004 .

[2]  P. Solomon,et al.  HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies , 2003, astro-ph/0310341.

[3]  A. Weiss,et al.  Gas and dust in the Cloverleaf quasar at redshift 2.5 , 2003, astro-ph/0309048.

[4]  L. Dunne,et al.  CO Molecular Gas in Infrared-luminous Galaxies , 2003, astro-ph/0301511.

[5]  M. Tecza,et al.  Ultraluminous Infrared Galaxies: QSOs in Formation? , 2002, astro-ph/0207405.

[6]  Y. Sekimoto,et al.  The Distribution of Atomic Carbon in the Orion Giant Molecular Cloud 1 , 2002 .

[7]  J. Glenn,et al.  A Comparison of Tracers of Cool Gas in Galaxies and the 12CO/13CO Luminosity Ratio in Luminous Infrared Galaxies , 2001 .

[8]  M. Gerin,et al.  Atomic Carbon in Galaxies , 1999, astro-ph/0003252.

[9]  D. Frayer,et al.  Molecular Gas in Strongly Interacting Galaxies. I. CO (1-0) Observations , 1999 .

[10]  N. Scoville,et al.  High-Resolution CO Observations of Luminous Infrared Galaxies , 1999 .

[11]  M. Tecza,et al.  Gasdynamics in the Luminous Merger NGC 6240 , 1999, astro-ph/9905031.

[12]  M. Gerin,et al.  Atomic Carbon in Arp 220 , 1998 .

[13]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[14]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[15]  A. Stark,et al.  AST/RO Observations of Atomic Carbon near the Galactic Center , 1998, astro-ph/0008439.

[16]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[17]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[18]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[19]  Thomas G. Phillips,et al.  Photon dominated regions: Observations of [C I] and CO , 1997 .

[20]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[21]  J. Carlstrom,et al.  Atomic Carbon in M82 , 1993 .

[22]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[23]  P. J. Huggins,et al.  The abundance of atomic carbon near the ionization fronts in M17 and S140 , 1985 .

[24]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[25]  A. Tielens,et al.  Photodissociation regions. II. A model for the Orion photodissociation region. , 1985 .

[26]  P. J. Huggins,et al.  Abundance of atomic carbon (C I) in dense interstellar clouds , 1981 .