Chapter Four – Nanoscale FETs

Since the invention of the integrated circuit (IC) in 1958, engineers and researchers around the world have worked on how to put more speed, performance and value onto smaller chips of silicon. The semiconductor industry has made considerable progress, especially regarding the Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The fundamental driver has been the continued shrinking of its feature sizes, allowing the exponential growth in device count that tracks the well-known Moore's Law, first formulated by Intel co-founder Gordon Moore. However, this law is a rough prediction of the future of IC expansion. The need of a more accurate forecast defined the International Technology Roadmap for Semiconductors (ITRS), which has been predicting and driving the pace of semiconductor technology at the same time. The use of CMOS technology also for high-frequency (HF) applications is now common. This is due to the significant increase in the unity current gain frequency of modern deep submicrometer MOS devices. However, to be competitive against other technologies for high-frequency (HF) applications, MOSFETs need to demonstrate comparable noise performance. Although the channel thermal noise of MOSFET has been known to be the most dominant source of noise in the device, additional noise sources emerge as the CMOS technology scales down, such as gate tunneling current, and substrate noise. On the other hand, since the noise figure of the MOSFET decreases with technology scaling, HF noise measurement, and characterization of extremely small devices is becoming more challenging. Due to these challenges, there is a lot of research around new technologies, new materials and new devices. This chapter presents a review of some of the recent results in this exciting area.

[1]  L. Geppert,et al.  The amazing vanishing transistor act , 2002 .

[2]  E. P. Vandamme,et al.  Critical discussion on unified 1/f noise models for MOSFETs , 2000 .

[3]  G. Gildenblat,et al.  A Unified Nonquasi-Static MOSFET Model for Large-Signal and Small-Signal Simulations , 2006, IEEE Transactions on Electron Devices.

[4]  Jean-Pierre Raskin,et al.  Impact of downscaling on high-frequency noise performance of bulk and SOI MOSFETs , 2004 .

[5]  D.B.M. Klaassen,et al.  Capacitance modeling of laterally non-uniform MOS devices , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[6]  K. Narasimhulu,et al.  The effect of LAC doping on deep submicrometer transistor capacitances and its influence on device RF performance , 2004, IEEE Transactions on Electron Devices.

[7]  B. Jagannathan,et al.  Record RF performance of 45-nm SOI CMOS Technology , 2007, 2007 IEEE International Electron Devices Meeting.

[8]  Meng-Hsueh Chiang,et al.  Speed superiority of scaled double-gate CMOS , 2002 .

[9]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[10]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[11]  Ali M. Niknejad,et al.  Compact Modeling for New Transistor Structures , 2007 .

[12]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[13]  Denis Flandre,et al.  Deep-submicrometer DC-to-RF SOI MOSFET macro-model , 2001 .

[14]  F. Schwierz,et al.  Performance Trends of Si-Based RF Transistors , 2005, 2005 IEEE Conference on Electron Devices and Solid-State Circuits.

[15]  D. Jimenez,et al.  Analytical Charge and Capacitance Models of Undoped Cylindrical Surrounding-Gate MOSFETs , 2007, IEEE Transactions on Electron Devices.

[16]  Antonio Lazaro,et al.  RF and noise performance of double gate and single gate SOI , 2006 .

[17]  Kartikeya Mayaram,et al.  Comments on "A small-signal MOSFET model for radio frequency IC applications" , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  P. Packan,et al.  A comparison of state-of-the-art NMOS and SiGe HBT devices for analog/mixed-signal/RF circuit applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[19]  P. Bai,et al.  A 65nm CMOS SOC Technology Featuring Strained Silicon Transistors for RF Applications , 2006, 2006 International Electron Devices Meeting.

[20]  R. Flaker,et al.  A 0.25 /spl mu/m CMOS SOI technology and its application to 4 Mb SRAM , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[21]  J.-P. Raskin,et al.  Analog/RF performance of multiple gate SOI devices: wideband simulations and characterization , 2006, IEEE Transactions on Electron Devices.

[22]  P. Vogl,et al.  Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s , 1998 .

[23]  Denis Flandre,et al.  Analog performance and application of graded-channel fully depleted SOI MOSFETs , 2000 .

[24]  M. J. Deen,et al.  Channel noise modeling of deep submicron MOSFETs , 2002 .

[25]  Francois Danneville,et al.  High frequency noise of SOI MOSFETs: performances and limitations (Invited Paper) , 2005, SPIE International Symposium on Fluctuations and Noise.

[26]  B.C. Paul,et al.  Modeling and optimization of fringe capacitance of nanoscale DGMOS devices , 2005, IEEE Transactions on Electron Devices.

[27]  T. Sorsch,et al.  Small-Signal Performance and Modeling of sub-50nm nMOSFETs with f above 460-GHz. , 2008, Solid-state electronics.

[28]  A. Siligaris,et al.  High-Frequency and Noise Performances of 65-nm MOSFET at Liquid Nitrogen Temperature , 2006, IEEE Transactions on Electron Devices.

[29]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[30]  Yoshitaka Tsunashima,et al.  FinFET: the prospective multi-gate device for future SoC applications , 2006 .

[31]  J. Barker,et al.  On the physics and modeling of small semiconductor devices—I , 1980 .

[32]  M.J. Deen,et al.  High-Frequency Noise of Modern MOSFETs: Compact Modeling and Measurement Issues , 2006, IEEE Transactions on Electron Devices.

[33]  M. Chan,et al.  Gate resistance modeling of multifin MOS devices , 2006, IEEE Electron Device Letters.

[34]  Ali M. Niknejad,et al.  A unified model for partial-depletion and full-depletion SOI circuit designs: using BSIMPD as a foundation , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[35]  Antonio Lazaro,et al.  RF and noise model of gate-all-around MOSFETs , 2008 .

[36]  Junichi Murota,et al.  High-mobility strained-Si PMOSFET's , 1996 .

[37]  J. Sun,et al.  A 90 nm CMOS MS/RF based foundry SOC technology comprising superb 185 GHz f/sub T/ RFMOS and versatile, high-Q passive components for cost/performance optimization , 2003, IEEE International Electron Devices Meeting 2003.

[38]  C. Sah,et al.  Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors☆ , 1966 .

[39]  Hermann A. Haus,et al.  Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect-Transistors , 1975 .

[40]  Claudio Fiegna,et al.  Comparative analysis of the RF and noise performance of bulk and single-gate ultra-thin SOI MOSFETs by numerical simulation☆ , 2004 .

[41]  J. Sleight,et al.  Strained ultrahigh performance fully depleted nMOSFETs with f/sub t/ of 330 GHz and sub-30-nm gate lengths , 2006, IEEE Electron Device Letters.

[42]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[43]  E. Morifuji,et al.  High-frequency AC characteristics of 1.5 nm gate oxide MOSFETs , 1996, International Electron Devices Meeting. Technical Digest.

[44]  Chih-Hung Chen,et al.  Modeling the partition of noise from the gate-tunneling current in MOSFETs , 2005, IEEE Electron Device Letters.

[45]  Jean-Pierre Colinge,et al.  Silicon-on-insulator 'gate-all-around' MOS device , 1990, 1990 IEEE SOS/SOI Technology Conference. Proceedings.

[46]  Denis Flandre,et al.  FinFET analogue characterization from DC to 110 GHz , 2005 .

[47]  Mansun Chan,et al.  Analysis of Geometry-Dependent Parasitics in Multifin Double-Gate FinFETs , 2007, IEEE Transactions on Electron Devices.

[48]  Kwangseok Han,et al.  Analytical drain thermal noise current model valid for deep submicron MOSFETs , 2004 .

[49]  N. Collaert,et al.  Analysis of the parasitic S/D resistance in multiple-gate FETs , 2005, IEEE Transactions on Electron Devices.

[50]  C. Hu,et al.  A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors , 1990 .

[51]  M.J. Deen,et al.  Analytical Determination of MOSFET's High-Frequency Noise Parameters From NF$_{50}$ Measurements and Its Application in RFIC Design , 2007, IEEE Journal of Solid-State Circuits.

[52]  D.B.M. Klaassen,et al.  A record high 150 GHz f/sub max/ realized at 0.18 /spl mu/m gate length in an industrial RF-CMOS technology , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[53]  Mitiko Miura-Mattausch,et al.  Gate Current Partitioning in MOSFET Models for Circuit Simulation , 2003 .

[54]  M. Deen,et al.  Extraction of the induced gate noise, channel noise, and their correlation in submicron MOSFETs from RF noise measurements , 2001 .

[55]  Zeynep Celik-Butler,et al.  Different noise mechanisms in high-k dielectric gate stacks (Invited Paper) , 2005, SPIE International Symposium on Fluctuations and Noise.

[56]  M. J. Deen,et al.  Low-power CMOS integrated circuits for radio frequency applications , 2005 .

[57]  C. Hu,et al.  A comparative study of advanced MOSFET concepts , 1996 .

[58]  Antonio Cerdeira,et al.  High-frequency compact analytical noise model for double-gate metal-oxide-semiconductor field-effect transistor , 2009 .

[59]  H.J. Mattausch,et al.  Analysis and Compact Modeling of MOSFET High-Frequency Noise , 2006, 2006 International Conference on Simulation of Semiconductor Processes and Devices.

[60]  T. Smedes,et al.  An analytical model for the non-quasi-static small-signal behaviour of submicron MOSFETs , 1995 .

[61]  A.-S. Porret,et al.  A novel approach to charge-based non-quasi-static model of the MOS transistor valid in all modes of operation , 2000 .

[62]  J.G. Fossum,et al.  On the feasibility of nanoscale triple-gate CMOS transistors , 2005, IEEE Transactions on Electron Devices.

[63]  B. Iñíguez,et al.  Compact model for short channel symmetric doped double-gate MOSFETs , 2008 .

[64]  Hiroshi Iwai,et al.  Cutoff frequency and propagation delay time of 1.5-nm gate oxide CMOS , 2001 .

[65]  A. van der Ziel,et al.  Noise in junction- and MOS-FET's at high temperatures , 1969 .

[66]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[67]  Francois Danneville,et al.  Microscopic noise modeling and macroscopic noise models: how good a connection? [FETs] , 1994 .

[68]  Christian Enz,et al.  A Design Oriented Charge-based Current Model for Symmetric DG MOSFET and its Correlation with the EKV Formalism , 2005 .

[69]  Chih-Hung Chen,et al.  Design of the Input Matching Network of RF CMOS LNAs for Low-Power Operation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[70]  G. G. Shahidi SOI technology for the GHz era , 2002, IBM J. Res. Dev..

[71]  K. Rim,et al.  Fabrication and analysis of deep submicron strained-Si n-MOSFET's , 2000 .

[72]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[73]  Sorin Cristoloveanu,et al.  Silicon on insulator technologies and devices: from present to future , 2001 .

[74]  Antonio Cerdeira,et al.  Modeling of potentials and threshold voltage for symmetric doped double-gate MOSFETs , 2008 .

[75]  M. Miura-Mattausch,et al.  Completely Surface-Potential-Based Compact Model of the Fully Depleted SOI-MOSFET Including Short-Channel Effects , 2006, IEEE Transactions on Electron Devices.

[76]  Andreia Cathelin,et al.  Silicon Technologies to Address mm-Wave Solutions , 2008 .

[77]  C. Park,et al.  Ultra low noise characteristics of AlGaAs/InGaAs/GaAs pseudomorphic HEMT's with wide head T-shaped gate , 1995 .

[78]  Peter Russer,et al.  An efficient method for computer aided noise analysis of linear amplifier networks , 1976 .

[79]  Ali M. Niknejad,et al.  Charge-based core and the model architecture of BSIM5 , 2005, Sixth international symposium on quality electronic design (isqed'05).

[80]  Y. Tsividis,et al.  A small signal dc-to-high-frequency nonquasistatic model for the four-terminal MOSFET valid in all regions of operation , 1985, IEEE Transactions on Electron Devices.

[81]  C.C. Enz,et al.  Compact modeling of thermal noise in the MOS transistor , 2005, IEEE Transactions on Electron Devices.

[82]  C. Hu,et al.  Hole injection SiO/sub 2/ breakdown model for very low voltage lifetime extrapolation , 1994 .

[83]  M. Aberg,et al.  MOSFET RF Extraction Uncertainties Due To S Parameter Measurement Errors , 2004 .

[84]  Denis Flandre,et al.  Substrate crosstalk reduction using SOI technology , 1997 .

[85]  V. Trivedi,et al.  A compact QM-based mobility model for nanoscale ultra-thin-body CMOS devices , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[86]  Jean-Pierre Colinge,et al.  Evolution of SOI MOSFETs: from Single Gate to Multiple Gates , 2003 .

[87]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[88]  J. A. Geurst Calculation of high-frequency characteristics of field-effect transistors , 1965 .

[89]  C. Hu,et al.  Nanoscale CMOS spacer FinFET for the terabit era , 2002 .

[90]  Francois Danneville,et al.  High Frequency Noise Performances of Silicon and III‐V Field Effect Transistor , 2007 .

[91]  G. Pant,et al.  Ultrascaled hafnium silicon oxynitride gate dielectrics with excellent carrier mobility and reliability , 2005 .

[92]  Lluis Pradell,et al.  Bias‐dependence of FET intrinsic noise sources, determined with a quasi‐2D model , 2003 .

[93]  Chih-Hung Chen,et al.  A review of gate tunneling current in MOS devices , 2006, Microelectron. Reliab..

[94]  Hong June Park,et al.  A non-quasi-static MOSFET model for SPICE-AC analysis , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[95]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[96]  M. J. Deen,et al.  Effect of forward and reverse substrate biasing on low-frequency noise in silicon PMOSFETs , 2002 .

[97]  M.J. Deen,et al.  A 4-mW monolithic CMOS LNA at 5.7GHz with the gate resistance used for input matching , 2006, IEEE Microwave and Wireless Components Letters.

[98]  L.K.J. Vandamme,et al.  1/f noise in MOS devices, mobility or number fluctuations? , 1994 .

[99]  Chih-Sheng Chang,et al.  Advanced CMOS technology portfolio for RF IC applications , 2005, IEEE Transactions on Electron Devices.

[100]  Yun Seop Yu,et al.  A Physics-Based, SPICE (Simulation Program with Integrated Circuit Emphasis)-Compatible Non-Quasi-Static MOS (Metal-Oxide-Semiconductor) Transient Model Based on the Collocation Method , 1998 .

[101]  M. Jamal Deen,et al.  Flicker noise cancellation technique for low-voltage direct-conversion mixers , 2007 .

[102]  Denis Flandre,et al.  Compact model for highly-doped double-gate SOI MOSFETs targeting baseband analog applications , 2007 .

[103]  Fang Wang,et al.  Low-frequency noise in submicrometer MOSFETs with HfO/sub 2/, HfO/sub 2//Al/sub 2/O/sub 3/ and HfAlO/sub x/ gate stacks , 2004, IEEE Transactions on Electron Devices.

[104]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[105]  Jean-Pierre Colinge,et al.  Device design guidelines for nano-scale MuGFETs , 2007 .

[106]  Abhinav Kranti,et al.  Analysis of static and dynamic performance of short-channel double-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors for improved cutoff frequency , 2005 .

[107]  F. Danneville,et al.  Compact-Modeling Solutions For Nanoscale Double-Gate and Gate-All-Around MOSFETs , 2006, IEEE Transactions on Electron Devices.

[108]  J. P. Nougier,et al.  Differential relaxation times and diffusivities of hot carriers in isotropic semiconductors , 1977 .

[109]  A. Mercha,et al.  Planar Bulk MOSFETs Versus FinFETs: An Analog/RF Perspective , 2006, IEEE Transactions on Electron Devices.

[110]  Eyad Abou-Allam,et al.  A small-signal MOSFET model for radio frequency IC applications , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[111]  D.B.M. Klaassen,et al.  A large signal non-quasi-static MOS model for RF circuit simulation , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[112]  L. Marchand,et al.  An overview of microwave component requirements for future space applications , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[113]  C. Hu,et al.  BSIM-MG: A Versatile Multi-Gate FET Model for Mixed-Signal Design , 2007, 2007 IEEE Symposium on VLSI Technology.

[114]  D. Lederer,et al.  Enhanced high resistivity SOI wafers for RF applications , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[115]  Noriyoshi Shibata,et al.  SiGe-based semiconductor-on-insulator substrate created by low-energy separation-by-implanted-oxygen , 1998 .

[116]  G. Taraschi,et al.  Electron mobility enhancement in strained-Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates , 2001, IEEE Electron Device Letters.

[117]  Xin Li,et al.  PSP-SOI: A Surface Potential Based Compact Model of Partially Depleted SOI MOSFETs , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[118]  T. Ohguro,et al.  The impact of scaling down to deep-submicron on CMOS RF circuits , 1998, Proceedings of the 23rd European Solid-State Circuits Conference.

[119]  A. Kornblit,et al.  High performance, sub-50nm MOSFETS for mixed signal applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[120]  A.S. Roy,et al.  Noise modeling methodologies in the presence of mobility degradation and their equivalence , 2006, IEEE Transactions on Electron Devices.

[121]  G.D.J. Smit,et al.  A PSP-Based Small-Signal MOSFET Model for Both Quasi-Static and Nonquasi-Static Operations , 2008, IEEE Transactions on Electron Devices.

[122]  A.-S. Porret,et al.  A compact non-quasi-static extension of a charge-based MOS model , 2001 .

[123]  Chih-Hung Chen,et al.  Direct extraction of the channel thermal noise in metal-oxide-semiconductor field effect transistor from measurements of their rf noise parameters , 2000 .

[124]  Noriyoshi Shibata,et al.  SiGe-on-insulator substrate using SiGe alloy grown Si(001) , 1999 .

[125]  Frederic Allibert,et al.  From SOI materials to innovative devices , 2001 .

[126]  A. Ziel Noise in solid state devices and circuits , 1986 .

[127]  F. Danneville,et al.  Impact of Lateral Asymmetry of MOSFETs on the Gate–Drain Noise Correlation , 2008, IEEE Transactions on Electron Devices.

[128]  Janusz A. Dobrowolski,et al.  Introduction to Computer Methods for Microwave Circuit Analysis and Design , 1991 .

[129]  H. A. Hamid,et al.  Explicit continuous model for long-channel undoped surrounding gate MOSFETs , 2005, IEEE Transactions on Electron Devices.

[130]  S.. Eminente,et al.  Small-Signal Analysis of Decananometer Bulk and SOI MOSFETs for Analog/Mixed-Signal and RF Applications Using the Time-Dependent Monte Carlo Approach , 2007, IEEE Transactions on Electron Devices.

[131]  M. J. Deen,et al.  A general noise and S-parameter deembedding procedure for on-wafer high-frequency noise measurements of MOSFETs , 2001 .

[132]  K. K. Hung,et al.  Characterization of metal‐oxide‐semiconductor transistors with very thin gate oxide , 1986 .

[133]  Isabel M. Tienda-Luna,et al.  A compact quantum model for fin-shaped field effect transistors valid from dc to high frequency and noise simulations , 2008 .

[134]  B. Jagannathan,et al.  Record RF performance of sub-46 nm L/sub gate/ NFETs in microprocessor SOI CMOS technologies , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[135]  B. Iniguez,et al.  Compact RF Modeling of Multiple-Gate MOSFETs , 2006, 2006 European Microwave Integrated Circuits Conference.

[136]  Ping-Keung Ko,et al.  A physics-based MOSFET noise model for circuit simulators , 1990 .

[137]  Juin J. Liou,et al.  RF transistors: Recent developments and roadmap toward terahertz applications , 2007 .

[138]  A. Cappy,et al.  Noise modeling and measurement techniques (HEMTs) , 1988 .

[139]  G. Gildenblat,et al.  PSP: An Advanced Surface-Potential-Based MOSFET Model for Circuit Simulation , 2006, IEEE Transactions on Electron Devices.

[140]  Y. Hoshino,et al.  Strained-silicon MOSFETs of low leakage current and high breakdown voltage for analog applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[141]  Eddy Simoen,et al.  Correlation between the 1∕f noise parameters and the effective low-field mobility in HfO2 gate dielectric n-channel metal–oxide–semiconductor field-effect transistors , 2004 .

[142]  W. Heinrich,et al.  High-frequency FET noise performance: a new approach , 1989 .

[143]  Luigi Colombo,et al.  Physics-based 1/ f noise model for MOSFETs with nitrided high- κ gate dielectrics , 2008 .

[144]  A. van der Ziel,et al.  Small-signal, high-frequency theory of field-effect transistors , 1964 .

[145]  B. Iñíguez,et al.  Continuous analytic I-V model for surrounding-gate MOSFETs , 2004, IEEE Electron Device Letters.

[146]  M. J. Deen,et al.  Effects of Gate Oxide and Junction Nonuniformity on the DC and Low-Frequency Noise Performance of Four-Gate Transistors , 2012, IEEE Transactions on Electron Devices.

[147]  M.J. Deen,et al.  Analytical modeling of MOSFETs channel noise and noise parameters , 2004, IEEE Transactions on Electron Devices.

[148]  J.C.S. Woo,et al.  AC floating-body effects in submicron fully depleted (FD) SOI nMOSFETs and the impact on analog applications , 1998, IEEE Electron Device Letters.

[149]  J. Colinge Silicon-on-Insulator Technology , 1991 .

[150]  O. Faynot,et al.  Compact analytical modeling of SOI partially depleted MOSFETs with LETISOI , 2001 .

[151]  F. Danneville,et al.  MOSFETs RF Noise Optimization via Channel Engineering , 2008, IEEE Electron Device Letters.

[152]  N. Sugiyama,et al.  Electron and hole mobility enhancement in strained-Si MOSFET's on SiGe-on-insulator substrates fabricated by SIMOX technology , 2000, IEEE Electron Device Letters.

[153]  Jean-Pierre Raskin,et al.  Noise modeling in fully depleted SOI MOSFETs , 2004 .

[154]  Antonio Lazaro,et al.  A compact quantum model of nanoscale double-gate metal-oxide-semiconductor field-effect transistor for high frequency and noise simulations , 2006 .

[155]  Juin J. Liou,et al.  RF MOSFET: recent advances, current status and future trends , 2003 .

[156]  D. Jimenez,et al.  Explicit Analytical Charge and Capacitance Models of Undoped Double-Gate MOSFETs , 2007, IEEE Transactions on Electron Devices.

[157]  M. J. Deen,et al.  High frequency noise of MOSFETs. II. Experiments , 1998 .

[158]  M.J. Deen,et al.  An effective gate resistance model for CMOS RF and noise modeling , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[159]  D. Gloria,et al.  High frequency low noise potentialities of down to 65 nm technology nodes MOSFETs , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[160]  Mahesh B. Patil,et al.  A new approach to model nonquasi-static (NQS) effects for MOSFETs. Part II: Small-signal analysis , 2003 .

[161]  Enrico Sangiorgi,et al.  An improved semi-classical Monte-Carlo approach for nano-scale MOSFET simulation , 2005 .

[162]  R. Havens,et al.  Noise modeling for RF CMOS circuit simulation , 2003 .

[163]  M. Fischetti,et al.  Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion , 2001 .

[164]  Hans Jurgen Mattausch,et al.  Compact Double-Gate MOSFET Model Correctly Predicting Volume-Inversion Effects , 2007 .