Verifying minimum spanning tree algorithms with Stone relation algebras

Abstract We study a generalisation of relation algebras in which the underlying Boolean algebra structure is replaced with a Stone algebra. Many theorems of relation algebras generalise with no or small changes. Weighted graphs represented as matrices over extended real numbers form an instance. Relational concepts and methods can thus be applied to weighted graphs. We formally specify the problem of computing minimum spanning forests and express Kruskal's algorithm in relation-algebraic terms. We give a total-correctness proof of the algorithm. All results are formally verified in Isabelle/HOL. This paper is an extended version of [40] .

[1]  I. Hodkinson,et al.  Relation Algebras by Games , 2002 .

[2]  Michael Winter,et al.  Rough Relation Algebras Revisited , 2006, Fundam. Informaticae.

[3]  Richard S. Bird,et al.  Algebra of programming , 1997, Prentice Hall International series in computer science.

[4]  Roger D. Maddux,et al.  Relation Algebras , 1997, Relational Methods in Computer Science.

[5]  Anna Maria Radzikowska,et al.  Double Residuated Lattices and Their Applications , 2001, RelMiCS.

[6]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[7]  Harrie C. M. de Swart,et al.  Computing tournament solutions using relation algebra and RelView , 2013, Eur. J. Oper. Res..

[8]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[9]  Bernhard Möller,et al.  Dijkstra, Floyd and Warshall meet Kleene , 2012, Formal Aspects of Computing.

[10]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[11]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[12]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[13]  Walter Guttmann,et al.  An algebraic framework for minimum spanning tree problems , 2018, Theor. Comput. Sci..

[14]  Jules Desharnais,et al.  Relational style laws and constructs of linear algebra , 2014, J. Log. Algebraic Methods Program..

[15]  H. Priestley,et al.  Distributive Lattices , 2004 .

[16]  Hugo Daniel Macedo,et al.  A linear algebra approach to OLAP , 2014, Formal Aspects of Computing.

[17]  Yasuo Kawahara,et al.  Kyushu University Institutional Repository Categorical Representation Theorems of Fuzzy Relations , 2022 .

[18]  Gunther Schmidt,et al.  Relationen und Graphen , 1989, Mathematik für Informatiker.

[19]  T. Blyth Lattices and Ordered Algebraic Structures , 2005 .

[20]  Georg Struth,et al.  Kleene Algebra , 2013, Arch. Formal Proofs.

[21]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[22]  Walter Guttmann,et al.  Relation-Algebraic Verification of Prim's Minimum Spanning Tree Algorithm , 2016, ICTAC.

[23]  Andreas Wolf,et al.  Relation-Algebraic Derivation of Spanning Tree Algorithms , 1998, MPC.

[24]  Tobias Nipkow,et al.  Concrete Semantics , 2014, Springer International Publishing.

[25]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[26]  Haskell B. Curry,et al.  Foundations of Mathematical Logic , 1964 .

[27]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[28]  Walter Guttmann,et al.  Stone Algebras , 2016, Arch. Formal Proofs.

[29]  INJECTIVE AND PROJECTIVE STONE ALGEBRAS , 1971 .

[30]  Georg Struth,et al.  Internal axioms for domain semirings , 2011, Sci. Comput. Program..

[31]  Rudolf Berghammer,et al.  Relational Semantics of Functional Programs , 1997, Relational Methods in Computer Science.

[32]  Michel Minoux,et al.  Graphs, dioids and semirings : new models and algorithms , 2008 .

[33]  S. D. Comer,et al.  On connections between information systems, rough sets and algebraic logic , 1993 .

[34]  George Michailidis Minimum Spanning Tree , 2005 .

[35]  Lawrence C. Paulson,et al.  Extending Sledgehammer with SMT Solvers , 2011, CADE.

[36]  Tobias Nipkow,et al.  Winskel is (almost) Right: Towards a Mechanized Semantics Textbook , 1996, Formal Aspects of Computing.

[37]  Yasuo Kawahara,et al.  Crispness in Dedekind Categories , 2001, RelMiCS.

[38]  Michael Winter,et al.  Relations among Matrices over a Semiring , 2015, RAMICS.

[39]  J. Goguen L-fuzzy sets , 1967 .

[40]  R. Backhouse,et al.  Regular Algebra Applied to Path-finding Problems , 1975 .

[41]  Stefano Bistarelli,et al.  C-semiring Frameworks for Minimum Spanning Tree Problems , 2009, WADT.

[42]  Sebastian Fischer,et al.  Combining relation algebra and data refinement to develop rectangle-based functional programs for reflexive-transitive closures , 2015, J. Log. Algebraic Methods Program..

[43]  Walter Guttmann,et al.  Algebras for iteration and infinite computations , 2012, Acta Informatica.

[44]  T. Nipkow Hoare Logics in Isabelle/HOL , 2002 .

[45]  Dominique Cansell,et al.  Formal Derivation of Spanning Trees Algorithms , 2003, ZB.

[46]  Walter Guttmann,et al.  Stone-Kleene Relation Algebras , 2017, Arch. Formal Proofs.

[47]  Zdzislaw Pawlak,et al.  Rough Sets, Rough Relations and Rough Functions , 1996, Fundam. Informaticae.

[48]  Algebraically closed distributivep-algebras , 1982 .

[49]  Georg Struth,et al.  Abstract abstract reduction , 2006, J. Log. Algebraic Methods Program..

[50]  Teo Asplund,et al.  Formalizing the Kleene Star for Square Matrices , 2014 .

[51]  J. Conway Regular algebra and finite machines , 1971 .

[52]  Georg Struth,et al.  Relation Algebra , 2014, Arch. Formal Proofs.

[53]  Michael Winter,et al.  A new algebraic approach to L-fuzzy relations convenient to study crispness , 2001, Inf. Sci..

[54]  Norbert Schirmer,et al.  Verification of sequential imperative programs in Isabelle-HOL , 2006 .

[55]  B. M. Schein,et al.  Representations of ordered semigroups and lattices by binary relations , 1978 .

[56]  Walter Guttmann,et al.  Stone Relation Algebras , 2017, RAMiCS.

[57]  G. Grätzer,et al.  Lattice Theory: First Concepts and Distributive Lattices , 1971 .

[58]  Szabolcs Mikulás,et al.  Axiomatizability of positive algebras of binary relations , 2011 .

[59]  Roger D. Maddux,et al.  Relation-Algebraic Semantics , 1996, Theor. Comput. Sci..

[60]  Ivo Düntsch,et al.  Relational Attribute Systems II: Reasoning with Relations in Information Structures , 2007, Trans. Rough Sets.