An Unprecedented Valorisation of Marble Slurry Waste Material as Solid Support for Palladium‐Catalysed Heck and Suzuki Reactions

[1]  M. S. Polo,et al.  Marble Waste Sludges as Effective Nanomaterials for Cu (II) Adsorption in Aqueous Media , 2021, Nanomaterials.

[2]  M. Mokhtar,et al.  Supported Metal Nanoparticles Assisted Catalysis: A Broad Concept in Functionalization of Ubiquitous C−H Bonds , 2021 .

[3]  Jiyang Li,et al.  Zeolite-Enhanced Sustainable Pd Catalyzed C-C Cross-Coupling Reaction: Controlled Release and Capture of Palladium. , 2020, ACS applied materials & interfaces.

[4]  S. Amin,et al.  A study of the chemical effect of marble and granite slurry on green mortar compressive strength , 2020 .

[5]  D. Murzin,et al.  Pd Supported IRMOF-3: Heterogeneous, Efficient and Reusable Catalyst for Heck Reaction , 2019, Catalysis Letters.

[6]  A. Trzeciak,et al.  Pd/DNA as Highly Active and Recyclable Catalyst of Suzuki–Miyaura Coupling , 2018, Catalysts.

[7]  P. Yang,et al.  Palladium-Catalyzed Asymmetric Intramolecular Dearomative Heck Reaction of Pyrrole Derivatives. , 2018, Organic letters.

[8]  Á. Molnár,et al.  Catalyst recycling—A survey of recent progress and current status , 2017 .

[9]  M. Curini,et al.  Definition of green synthetic tools based on safer reaction media, heterogeneous catalysis, and flow technology , 2017 .

[10]  N. Careddu,et al.  Characterization methodology for re-using marble slurry in industrial applications , 2017 .

[11]  Anshuman Srivastava,et al.  An investigation on effect of partial replacement of cement by waste marble slurry , 2017 .

[12]  P. K. Baroliya,et al.  Marble slurry waste as a scavenger material for Cr(III) ions from aqueous medium , 2016 .

[13]  T. Ward,et al.  Recent Advances in the Palladium Catalyzed Suzuki–Miyaura Cross-Coupling Reaction in Water , 2016, Catalysis Letters.

[14]  V. Hessel,et al.  Supported Liquid Phase Catalyst coating in micro flow Mizoroki–Heck reaction , 2015 .

[15]  C. H. Bartholomew,et al.  Heterogeneous Catalyst Deactivation and Regeneration: A Review , 2015 .

[16]  Jian‐Qiang Wang,et al.  Activation of Aryl Chlorides in Water under Phase-Transfer Agent-Free and Ligand-Free Suzuki Coupling by Heterogeneous Palladium Supported on Hybrid Mesoporous Carbon , 2015 .

[17]  R. Varma Nano-catalysts with magnetic core: sustainable options for greener synthesis , 2014 .

[18]  Allan M Jordan,et al.  The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. , 2011, Journal of medicinal chemistry.

[19]  Javier Magano,et al.  Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. , 2011, Chemical reviews.

[20]  M. Beller,et al.  Recent Applications of Palladium‐Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries , 2009 .

[21]  A. Fukuoka,et al.  Sustainable green catalysis by supported metal nanoparticles. , 2009, Chemical record.

[22]  G. Mignani,et al.  Selected patented cross-coupling reaction technologies. , 2006, Chemical reviews.

[23]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[24]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[25]  A. B. Haan,et al.  Reverse flow adsorption: integrating the recovery and recycling of homogeneous catalysts , 2004 .

[26]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[27]  W. Cabri,et al.  Recent Developments and New Perspectives in the Heck Reaction , 1995 .

[28]  R. Heck,et al.  Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides , 1972 .

[29]  K. Mori,et al.  Arylation of Olefin with Aryl Iodide Catalyzed by Palladium , 1971 .

[30]  Claude R. Henry,et al.  Morphology of supported nanoparticles , 2005 .