Characterization of classical Gaussian processes using quantum probes
暂无分享,去创建一个
[1] Claudia Benedetti,et al. EFFECTS OF CLASSICAL ENVIRONMENTAL NOISE ON ENTANGLEMENT AND QUANTUM DISCORD DYNAMICS , 2012, 1209.4201.
[2] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[3] Nicolò Spagnolo,et al. Phase estimation via quantum interferometry for noisy detectors. , 2011, Physical review letters.
[4] Matteo G. A. Paris,et al. Bayesian estimation in homodyne interferometry , 2009, 0901.2585.
[5] Dieter Suter,et al. Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.
[6] M. Barbieri,et al. Homodyne estimation of Gaussian quantum discord. , 2012, Physical review letters.
[7] Robert Joynt,et al. Classical simulation of quantum dephasing and depolarizing noise , 2014 .
[8] Erik Lucero,et al. Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.
[9] H. Yuen. Quantum detection and estimation theory , 1978, Proceedings of the IEEE.
[10] Claudia Benedetti,et al. Quantum probes for the spectral properties of a classical environment , 2014 .
[11] Hugo Cable,et al. Parameter estimation with entangled photons produced by parametric down-conversion. , 2009, Physical review letters.
[12] Marco G. Genoni,et al. Optical interferometry in the presence of large phase diffusion , 2012, 1203.2956.
[13] James D. Malley,et al. Quantum Statistical Inference , 1993 .
[14] L. Davidovich,et al. Quantum metrological limits via a variational approach. , 2012, Physical review letters.
[15] Marco Genovese,et al. Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations , 2013, 1305.4475.
[16] Nir Davidson,et al. Direct measurement of the system–environment coupling as a tool for understanding decoherence and dynamical decoupling , 2011, 1103.1104.
[17] Dynamical-decoupling noise spectroscopy at an optimal working point of a qubit , 2013, 1308.3102.
[18] M. G. A. Paris,et al. Dynamics of quantum correlations in colored-noise environments , 2012, 1212.1484.
[19] Joakim Bergli,et al. Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise , 2012, 1206.2174.
[20] Alex Monras. Optimal phase measurements with pure Gaussian states , 2006 .
[21] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[22] S. Olivares,et al. Qubit-assisted thermometry of a quantum harmonic oscillator , 2012, 1205.3465.
[23] B. Spagnolo,et al. Stability measures in metastable states with Gaussian colored noise. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Dieter Suter,et al. Effect of system level structure and spectral distribution of the environment on the decoherence rate , 2007, quant-ph/0701086.
[25] I. Walmsley,et al. Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.
[26] L. Davidovich,et al. Quantum Metrology for Noisy Systems , 2011 .
[27] Matteo G. A. Paris,et al. Quantum probes for fractional Gaussian processes , 2014, 1401.4194.
[28] N. Wiener. The Average value of a Functional , 1924 .
[29] Amir Yacoby,et al. Semiclassical Model for the Dephasing of a Two-Electron Spin Qubit Coupled to a Coherently Evolving Nuclear Spin Bath , 2011 .
[30] Stefano Olivares,et al. Bayesian estimation of one-parameter qubit gates , 2008, 0812.0923.
[31] T. Yu,et al. Entanglement evolution in a non-Markovian environment , 2009, 0906.5378.
[32] Claudia Benedetti,et al. EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS , 2012 .
[33] Dieter Suter,et al. Robustness of dynamical decoupling sequences , 2012, 1211.5001.
[34] S. Olivares,et al. Qubit thermometry for micromechanical resonators , 2011, 1103.2875.
[35] J. B. Hertzberg,et al. Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.
[36] M. J. Biercuk,et al. Phenomenological Study of Decoherence in Solid-State Spin Qubits due to Nuclear Spin Diffusion , 2011, 1101.5189.
[37] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[38] D. Cory,et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .
[39] E. Thuneberg,et al. Motional averaging in a superconducting qubit , 2012, Nature Communications.
[40] Gabriel A. Durkin,et al. Preferred measurements: optimality and stability in quantum parameter estimation , 2009, 0909.2070.
[41] M. Paris,et al. Non-Markovianity of colored noisy channels , 2013, 1309.5270.
[42] Dorje C. Brody,et al. Geometrization of statistical mechanics , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[43] G. Burkard,et al. Non-Markovian qubit dynamics in the presence of 1 / f noise , 2008, 0803.0564.
[44] Stefano Olivares,et al. Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.
[45] Noise-induced anomalous diffusion over a periodically modulated saddle. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[46] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[47] Dorje C. Brody,et al. Statistical geometry in quantum mechanics , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[48] A Smerzi,et al. Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. , 2007, Physical review letters.
[49] Gabriele De Chiara,et al. Berry phase for a spin 1/2 particle in a classical fluctuating field. , 2003, Physical review letters.
[50] Jun-Qi Li,et al. Quantum and classical correlations in a classical dephasing environment , 2011 .