Characterization of classical Gaussian processes using quantum probes

Abstract We address the use of a single qubit as a quantum probe to characterize the properties of classical noise. In particular, we focus on the characterization of classical noise arising from the interaction with a stochastic field described by Gaussian processes. The tools of quantum estimation theory allow us to find the optimal state preparation for the probe, the optimal interaction time with the external noise, and the optimal measurement to effectively extract information on the noise parameter. We also perform a set of simulated experiments to assess the performances of maximum likelihood estimator, showing that the asymptotic regime, where the estimator is unbiased and efficient, is approximately achieved already after few thousands repeated measurements on the probe system.

[1]  Claudia Benedetti,et al.  EFFECTS OF CLASSICAL ENVIRONMENTAL NOISE ON ENTANGLEMENT AND QUANTUM DISCORD DYNAMICS , 2012, 1209.4201.

[2]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[3]  Nicolò Spagnolo,et al.  Phase estimation via quantum interferometry for noisy detectors. , 2011, Physical review letters.

[4]  Matteo G. A. Paris,et al.  Bayesian estimation in homodyne interferometry , 2009, 0901.2585.

[5]  Dieter Suter,et al.  Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.

[6]  M. Barbieri,et al.  Homodyne estimation of Gaussian quantum discord. , 2012, Physical review letters.

[7]  Robert Joynt,et al.  Classical simulation of quantum dephasing and depolarizing noise , 2014 .

[8]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[9]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[10]  Claudia Benedetti,et al.  Quantum probes for the spectral properties of a classical environment , 2014 .

[11]  Hugo Cable,et al.  Parameter estimation with entangled photons produced by parametric down-conversion. , 2009, Physical review letters.

[12]  Marco G. Genoni,et al.  Optical interferometry in the presence of large phase diffusion , 2012, 1203.2956.

[13]  James D. Malley,et al.  Quantum Statistical Inference , 1993 .

[14]  L. Davidovich,et al.  Quantum metrological limits via a variational approach. , 2012, Physical review letters.

[15]  Marco Genovese,et al.  Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations , 2013, 1305.4475.

[16]  Nir Davidson,et al.  Direct measurement of the system–environment coupling as a tool for understanding decoherence and dynamical decoupling , 2011, 1103.1104.

[17]  Dynamical-decoupling noise spectroscopy at an optimal working point of a qubit , 2013, 1308.3102.

[18]  M. G. A. Paris,et al.  Dynamics of quantum correlations in colored-noise environments , 2012, 1212.1484.

[19]  Joakim Bergli,et al.  Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise , 2012, 1206.2174.

[20]  Alex Monras Optimal phase measurements with pure Gaussian states , 2006 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  S. Olivares,et al.  Qubit-assisted thermometry of a quantum harmonic oscillator , 2012, 1205.3465.

[23]  B. Spagnolo,et al.  Stability measures in metastable states with Gaussian colored noise. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Dieter Suter,et al.  Effect of system level structure and spectral distribution of the environment on the decoherence rate , 2007, quant-ph/0701086.

[25]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[26]  L. Davidovich,et al.  Quantum Metrology for Noisy Systems , 2011 .

[27]  Matteo G. A. Paris,et al.  Quantum probes for fractional Gaussian processes , 2014, 1401.4194.

[28]  N. Wiener The Average value of a Functional , 1924 .

[29]  Amir Yacoby,et al.  Semiclassical Model for the Dephasing of a Two-Electron Spin Qubit Coupled to a Coherently Evolving Nuclear Spin Bath , 2011 .

[30]  Stefano Olivares,et al.  Bayesian estimation of one-parameter qubit gates , 2008, 0812.0923.

[31]  T. Yu,et al.  Entanglement evolution in a non-Markovian environment , 2009, 0906.5378.

[32]  Claudia Benedetti,et al.  EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS , 2012 .

[33]  Dieter Suter,et al.  Robustness of dynamical decoupling sequences , 2012, 1211.5001.

[34]  S. Olivares,et al.  Qubit thermometry for micromechanical resonators , 2011, 1103.2875.

[35]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[36]  M. J. Biercuk,et al.  Phenomenological Study of Decoherence in Solid-State Spin Qubits due to Nuclear Spin Diffusion , 2011, 1101.5189.

[37]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[38]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[39]  E. Thuneberg,et al.  Motional averaging in a superconducting qubit , 2012, Nature Communications.

[40]  Gabriel A. Durkin,et al.  Preferred measurements: optimality and stability in quantum parameter estimation , 2009, 0909.2070.

[41]  M. Paris,et al.  Non-Markovianity of colored noisy channels , 2013, 1309.5270.

[42]  Dorje C. Brody,et al.  Geometrization of statistical mechanics , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  G. Burkard,et al.  Non-Markovian qubit dynamics in the presence of 1 / f noise , 2008, 0803.0564.

[44]  Stefano Olivares,et al.  Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.

[45]  Noise-induced anomalous diffusion over a periodically modulated saddle. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[47]  Dorje C. Brody,et al.  Statistical geometry in quantum mechanics , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  A Smerzi,et al.  Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. , 2007, Physical review letters.

[49]  Gabriele De Chiara,et al.  Berry phase for a spin 1/2 particle in a classical fluctuating field. , 2003, Physical review letters.

[50]  Jun-Qi Li,et al.  Quantum and classical correlations in a classical dephasing environment , 2011 .