Combining Automated and Interactive Visual Analysis of Biomechanical Motion Data

We present a framework for combining automated and interactive visual analysis techniques for use on high-resolution biomechanical data. Analyzing the complex 3D motion of, e.g., pigs chewing or bats flying, can be enhanced by providing investigators with a multiview interface that allows interaction across multiple modalities and representations. In this paper, we employ nonlinear dimensionality reduction to automatically learn a low-dimensional representation of the data and hierarchical clustering to learn patterns inherent within the motion segments. Our multi-view framework allows investigators to simultaneously view a low-dimensional embedding, motion segment clustering, and 3D visual representation of the data side-by-side.We describe an application to a dataset containing thousands of frames of high-speed, 3D motion data collected over multiple experimental trials.

[1]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[2]  Holger Winnemöller,et al.  Light Waving: Estimating Light Positions From Photographs Alone , 2005, SIGGRAPH '05.

[3]  Scott Tashman,et al.  In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: Application to knee kinematics , 2001, IEEE Transactions on Medical Imaging.

[4]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[5]  Robert Pless,et al.  Image distance functions for manifold learning , 2007, Image Vis. Comput..

[6]  David H. Laidlaw,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Exploratory Visualization of Animal Kinematics Using Instantaneous Helical Axes , 2022 .

[7]  Holger Winnemöller,et al.  Light Waving: Estimating Light Positions From Photographs Alone , 2005, Comput. Graph. Forum.

[8]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[9]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[10]  Jun-Wei Hsieh,et al.  Motion-based video retrieval by trajectory matching , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  俊一 甘利,et al.  A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, Jhon Wiley & Sons, 2001年,504ページ. (根本幾・川勝真喜訳:独立成分分析——信号解析の新しい世界,東京電機大学出版局,2005年,532ページ.) , 2010 .

[12]  James J. Thomas,et al.  Challenges for Visual Analytics , 2009, Inf. Vis..

[13]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[14]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[15]  William Ribarsky,et al.  Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[16]  William Ribarsky,et al.  Science of Analytical Reasoning , 2009, Inf. Vis..

[17]  Leon G. Higley,et al.  Forensic Entomology: An Introduction , 2009 .

[18]  Marcel Rooze,et al.  Visualization of Combined Motions in Human Joints , 1998, IEEE Computer Graphics and Applications.

[19]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[20]  Robert Pless,et al.  On Manifold Structure of Cardiac MRI Data: Application to Segmentation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  G. Elisabeta Marai,et al.  Estimating joint contact areas and ligament lengths from bone kinematics and surfaces , 2004, IEEE Transactions on Biomedical Engineering.

[22]  John T. Stasko,et al.  Effectiveness of Animation in Trend Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.