Microscopic Shock Structure in Model Particle Systems: The Boghosian-Levermore Cellular Automation Revisited
暂无分享,去创建一个
[1] Pablo A. Ferrari. The Simple Exclusion Process as Seen from a Tagged Particle , 1986 .
[2] Maury Bramson,et al. Shocks in the asymmetric exclusion process , 1988 .
[3] W. David Wick,et al. A dynamical phase transition in an infinite particle system , 1985 .
[4] Pablo A. Ferrari,et al. Shock fluctuations in asymmetric simple exclusion , 1992 .
[5] T. Liggett. Interacting Particle Systems , 1985 .
[6] Hydrodynamics of stochastic cellular automata , 1989 .
[7] Y. Pomeau,et al. Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.
[8] Zanetti,et al. Hydrodynamics of lattice-gas automata. , 1989, Physical review. A, General physics.
[9] E. Presutti,et al. Convergence of stochastic cellular automation to Burger's equation: fluctuations and stability , 1988 .
[10] Tommaso Toffoli,et al. Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.
[11] P. Ferrari,et al. MICROSCOPIC STRUCTURE OF TRAVELLING WAVES IN THE ASYMMETRIC SIMPLE EXCLUSION PROCESS , 1991 .
[12] C. Boldrighini,et al. Computer simulation of shock waves in the completely asymmetric simple exclusion process , 1989 .
[13] Jean-Pierre Fouque,et al. Hydrodynamical Limit for the Asymmetric Simple Exclusion Process , 1987 .
[14] Ellen Saada,et al. Microscopic structure at the shock in the asymmetric simple exclusion , 1989 .
[15] H. Rost,et al. Non-equilibrium behaviour of a many particle process: Density profile and local equilibria , 1981 .
[16] Herbert Spohn,et al. Microscopic models of hydrodynamic behavior , 1988 .