A New Construction of Multiple Target Sonar and Extended Costas Arrays with Perfect Correlation

Previously there were no multiple target perfect families of Costas and sonar arrays. In this paper using the Welch Costas array and some results from design theory we construct four perfect auto and cross-correlation families of sonar and of extended Costas arrays.

[1]  Tor Helleseth,et al.  Mathematical properties of sequences and other combinatorial structures , 2003 .

[2]  C. Colbourn,et al.  Recursive constructions for cyclic block designs , 1984 .

[3]  Oscar Moreno,et al.  A new family of frequency-hop codes , 2000, IEEE Trans. Commun..

[4]  Solomon W. Golomb,et al.  Two-dimensional synchronization patterns for minimum ambiguity , 1982, IEEE Trans. Inf. Theory.

[5]  P. Vijay Kumar,et al.  On the existence of square dot-matrix patterns having a specific three-valued periodic-correlation function , 1988, IEEE Transactions on Information Theory.

[6]  N. Levanon,et al.  Any two N × N costas signals must have at least one common ambiguity sidelobe if N > 3—A proof , 1985, Proceedings of the IEEE.

[7]  Jin Fan,et al.  Disjoint difference sets, difference triangle sets, and related codes , 1992, IEEE Trans. Inf. Theory.

[8]  Zhen Zhang,et al.  New constructions of optimal cyclically permutable constant weight codes , 1995, IEEE Trans. Inf. Theory.

[10]  Solomon W. Golomb,et al.  Two-dimensional patterns with optimal auto- and cross-correlation functions , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[11]  E. Titlebaum,et al.  Frequency hop multiple access codes based upon the theory of cubic congruences , 1990 .

[12]  O. Moreno,et al.  A class of frequency hop codes with nearly ideal characteristics for multiple-target recognition , 1997, Proceedings of IEEE International Symposium on Information Theory.

[13]  Edward L. Titlebaum,et al.  Multiuser sonar properties for Costas array frequency hop coded signals , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[14]  Oscar Moreno,et al.  Sonar sequences from Costas arrays and the best known sonar sequences with up to 100 symbols , 1993, IEEE Trans. Inf. Theory.

[15]  O. Moreno,et al.  Extended sonar sequences , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[16]  Oscar Moreno,et al.  On periodicity properties of Costas arrays and a conjecture on permutation polynomials , 1996, IEEE Trans. Inf. Theory.

[17]  Edward L. Titlebaum,et al.  Ambiguity properties of quadratic congruential coding , 1991 .

[18]  Edward L. Titlebaum,et al.  A class of frequency hop codes with nearly ideal characteristics for use in multiple-access spread-spectrum communications and radar and sonar systems , 1992, IEEE Trans. Commun..

[19]  P. Vijay Kumar,et al.  Improved constructions and bounds for 2-D optical orthogonal codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[20]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[21]  S. Golomb,et al.  Constructions and properties of Costas arrays , 1984, Proceedings of the IEEE.

[22]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.