Global sea level change signatures observed by GRACE satellite gravimetry

Ice mass loss on land results in sea level rise, but its rate varies regionally due to gravitational self-attraction effects. Observing regional sea level rates by ocean mass change using the Gravity Recovery and Climate Experiment (GRACE) gravity solutions is difficult due to GRACE’s spatial resolution (~a few hundred km) and other limitations. Here we estimate regional sea level mass change using GRACE data (without contributions from temperature and salinity variations) by addressing these limitations: restoring spatially spread and attenuated signals in post-processed GRACE data; constraining ocean mass distribution to conform to the changing geoid; and judging specific corrections applied to GRACE data including a new geocenter estimate. The estimated global sea level mass trend for 2003–2014 is 2.14 ± 0.12 mm/yr. Regional trends differ considerably among ocean basins, ranging from −0.5 mm/yr in the Arctic to about 2.4 mm/yr in the Indian and South Atlantic Oceans.

[1]  Richard M. Bingley,et al.  Sea level: measuring the bounding surfaces of the ocean , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[3]  Byron D. Tapley,et al.  Contribution of ice sheet and mountain glacier melt to recent sea level rise , 2013 .

[4]  Don P. Chambers,et al.  Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean , 2012 .

[5]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[6]  Jianli Chen,et al.  Ice and groundwater effects on long term polar motion (1979–2010) , 2017 .

[7]  Pavel Ditmar,et al.  Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models , 2016 .

[8]  Srinivas Bettadpur,et al.  The pole tide and its effect on GRACE time‐variable gravity measurements: Implications for estimates of surface mass variations , 2015 .

[9]  Eric Rignot,et al.  Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model , 2014 .

[10]  M. Watkins,et al.  Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution , 2016 .

[11]  H. Dieng,et al.  New estimate of the current rate of sea level rise from a sea level budget approach , 2017 .

[12]  Kimio Hanawa,et al.  Observations: Oceanic Climate Change and Sea Level , 2007 .

[13]  Isabella Velicogna,et al.  Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data , 2013 .

[14]  W. Peltier,et al.  Space-geodetic and water level gauge constraints on continental uplift and tilting over North America: regional convergence of the ICE-6G_C (VM5a/VM6) models , 2017 .

[15]  Guillaume Ramillien,et al.  Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo , 2009 .

[16]  K. Seo,et al.  Correlated error reduction in GRACE data over Greenland using extended empirical orthogonal functions , 2017 .

[17]  W. R. Peltier,et al.  Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment , 2009 .

[18]  J. Kusche,et al.  A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data , 2016 .

[19]  D. Chambers,et al.  Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications , 2013 .

[20]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[21]  W. Landman Climate change 2007: the physical science basis , 2010 .

[22]  Duane E. Waliser,et al.  Gravity Recovery and Climate Experiment (GRACE) alias error from ocean tides , 2008 .

[23]  Armin Köhl,et al.  Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic , 2015 .

[24]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[25]  A. Cazenave,et al.  Sea level budget over 2005–2013: missing contributions and data errors , 2015 .

[26]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[27]  J. Kusche,et al.  Passive‐ocean radial basis function approach to improve temporal gravity recovery from GRACE observations , 2017 .

[28]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[29]  Shin-Chan Han,et al.  Broadscale postseismic gravity change following the 2011 Tohoku-Oki earthquake and implication for deformation by viscoelastic relaxation and afterslip , 2014, Geophysical research letters.

[30]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[31]  W. Peltier,et al.  GRACE era secular trends in Earth rotation parameters: A global scale impact of the global warming process? , 2011 .

[32]  Duane E. Waliser,et al.  GRACE's spatial aliasing error , 2006 .

[33]  J. Willis,et al.  Deep-ocean contribution to sea level and energy budget not detectable over the past decade , 2014 .

[34]  Jens Schröter,et al.  Revisiting the contemporary sea-level budget on global and regional scales , 2016, Proceedings of the National Academy of Sciences.

[35]  A. Cazenave,et al.  The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content , 2015, Surveys in Geophysics.

[36]  P. Tregoning,et al.  Journal of Geophysical Research: Solid Earth An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model , 2016 .

[37]  W. Tad Pfeffer,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[38]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[39]  J. Mitrovica,et al.  Bias in GRACE estimates of ice mass change due to accompanying sea-level change , 2013, Journal of Geodesy.

[40]  Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging , 2008 .

[41]  Peter U. Clark,et al.  The Sea-Level Fingerprint of West Antarctic Collapse , 2009, Science.

[42]  I. Velicogna,et al.  Detection of sea level fingerprints derived from GRACE gravity data , 2017 .

[43]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[44]  Isabella Velicogna,et al.  Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data , 2014 .

[45]  M. Tamisiea,et al.  Recent mass balance of polar ice sheets inferred from patterns of global sea-level change , 2001, Nature.

[46]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .