Membrane bound modified form of clade B Env, JRCSF is suitable for immunogen design as it is efficiently cleaved and displays all the broadly neutralizing epitopes including V2 and C2 domain-dependent conformational epitopes

[1]  Young Do Kwon,et al.  Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G , 2016, Cell.

[2]  G. Debnath,et al.  D-101 HIV-1 neutralizing antibodies induced by native-like envelope trimers , 2016 .

[3]  Daniel W. Kulp,et al.  Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site , 2015, PLoS pathogens.

[4]  R. Wyatt,et al.  Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. , 2015, Cell reports.

[5]  J. Bhattacharya,et al.  An Efficiently Cleaved HIV-1 Clade C Env Selectively Binds to Neutralizing Antibodies , 2015, PloS one.

[6]  John P. Moore,et al.  A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene , 2015, Journal of Virology.

[7]  R. Wyatt,et al.  Well-Ordered Trimeric HIV-1 Subtype B and C Soluble Spike Mimetics Generated by Negative Selection Display Native-like Properties , 2015, PLoS pathogens.

[8]  John P. Moore,et al.  Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits , 2014, Retrovirology.

[9]  Wayne C Koff,et al.  Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. , 2014, Immunity.

[10]  James C Paulson,et al.  Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. , 2014, Immunity.

[11]  John P. Moore,et al.  Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation , 2013, Proceedings of the National Academy of Sciences.

[12]  J. Mascola,et al.  Robust Neutralizing Antibodies Elicited by HIV-1 JRFL Envelope Glycoprotein Trimers in Nonhuman Primates , 2013, Journal of Virology.

[13]  John P. Moore,et al.  A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies , 2013, PLoS pathogens.

[14]  Q. Sattentau,et al.  Development of prophylactic vaccines against HIV-1 , 2013, Retrovirology.

[15]  Young Do Kwon,et al.  Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains , 2013, Journal of Virology.

[16]  Tongqing Zhou,et al.  Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization , 2013, Science.

[17]  Chaim A. Schramm,et al.  Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus , 2013, Nature.

[18]  Robin A. Weiss,et al.  Neutralizing antibodies to HIV-1 induced by immunization , 2013, The Journal of experimental medicine.

[19]  T. Wrin,et al.  Prime-Boost Immunization of Rabbits with HIV-1 gp120 Elicits Potent Neutralization Activity against a Primary Viral Isolate , 2013, PloS one.

[20]  Gwo-Yu Chuang,et al.  A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2 Neutralizing Antibodies , 2012, Journal of Virology.

[21]  Young Do Kwon,et al.  Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9 , 2011, Nature.

[22]  Ron Diskin,et al.  Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding , 2011, Science.

[23]  J. Mascola,et al.  HIV type 1 Env precursor cleavage state affects recognition by both neutralizing and nonneutralizing gp41 antibodies. , 2011, AIDS research and human retroviruses.

[24]  J. Sodroski,et al.  Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity , 2011, PLoS pathogens.

[25]  Mario Roederer,et al.  Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1 , 2010, Science.

[26]  David C Montefiori,et al.  The role of antibodies in HIV vaccines. , 2010, Annual review of immunology.

[27]  Pham Phung,et al.  Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target , 2009, Science.

[28]  J. Binley,et al.  Improved Induction of Antibodies against Key Neutralizing Epitopes by Human Immunodeficiency Virus Type 1 gp120 DNA Prime-Protein Boost Vaccination Compared to gp120 Protein-Only Vaccination , 2008, Journal of Virology.

[29]  R. Wyatt,et al.  Selective recognition of oligomeric HIV-1 primary isolate envelope glycoproteins by potently neutralizing ligands requires efficient precursor cleavage. , 2005, Virology.

[30]  S. A. Gallo,et al.  The HIV Env-mediated fusion reaction. , 2003, Biochimica et biophysica acta.

[31]  Richard D. Leapman,et al.  Oligomeric Structure of the Human Immunodeficiency Virus Type 1 Envelope Protein on the Virion Surface , 2002, Journal of Virology.

[32]  J. Sodroski,et al.  Loss of a Single N-Linked Glycan Allows CD4-Independent Human Immunodeficiency Virus Type 1 Infection by Altering the Position of the gp120 V1/V2 Variable Loops , 2001, Journal of Virology.

[33]  J. Binley,et al.  A Recombinant Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Complex Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits Is an Antigenic Mimic of the Trimeric Virion-Associated Structure , 2000, Journal of Virology.

[34]  P. S. Kim,et al.  Inhibiting HIV-1 Entry Discovery of D-Peptide Inhibitors that Target the gp41 Coiled-Coil Pocket , 1999, Cell.

[35]  P. S. Kim,et al.  HIV Entry and Its Inhibition , 1998, Cell.

[36]  S. Harrison,et al.  Atomic structure of the ectodomain from HIV-1 gp41 , 1997, Nature.

[37]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[38]  Joseph Sodroski,et al.  CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 , 1996, Nature.

[39]  Ying Sun,et al.  The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates , 1996, Cell.

[40]  Stephen C. Peiper,et al.  Identification of a major co-receptor for primary isolates of HIV-1 , 1996, Nature.

[41]  H. Klenk,et al.  Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gpl60 , 1992, Nature.

[42]  J. Bonifacino,et al.  Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Burton,et al.  Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge , 2008, Nature Medicine.

[44]  M. Greaves,et al.  The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus , 1984, Nature.